Namespaces
Variants
Actions

Difference between revisions of "Double and dual numbers"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Hypercomplex numbers of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d0338601.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d0338602.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d0338603.png" /> are real numbers, and where the double numbers satisfy the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d0338604.png" />, while the dual numbers satisfy the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d0338605.png" /> (cf. [[Hypercomplex number|Hypercomplex number]]). Addition of double and dual numbers is defined by
+
<!--
 +
d0338601.png
 +
$#A+1 = 70 n = 0
 +
$#C+1 = 70 : ~/encyclopedia/old_files/data/D033/D.0303860 Double and dual numbers
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d0338606.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
Hypercomplex numbers of the form  $  a + be $,
 +
where  $  a $
 +
and  $  b $
 +
are real numbers, and where the double numbers satisfy the relation  $  e  ^ {2} = 1 $,
 +
while the dual numbers satisfy the relation  $  e  ^ {2} = 0 $(
 +
cf. [[Hypercomplex number|Hypercomplex number]]). Addition of double and dual numbers is defined by
 +
 
 +
$$
 +
( a _ {1} + b _ {1} e) + ( a _ {2} + b _ {2} e)  = \
 +
( a _ {1} + a _ {2} ) + ( b _ {1} + b _ {2} ) e.
 +
$$
  
 
Multiplication of double numbers is defined by
 
Multiplication of double numbers is defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d0338607.png" /></td> </tr></table>
+
$$
 +
( a _ {1} + b _ {1} e) ( a _ {2} + b _ {2} e )  = \
 +
( a _ {1} a _ {2} + b _ {1} b _ {2} ) + ( a _ {1} b _ {2} +
 +
a _ {2} b _ {1} ) e ,
 +
$$
  
 
and that of dual numbers by
 
and that of dual numbers by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d0338608.png" /></td> </tr></table>
+
$$
 +
( a _ {1} + b _ {1} e )( a _ {2} + b _ {2} e )  = a _ {1} a _ {2} +
 +
( a _ {1} b _ {2} + a _ {2} b _ {1} ) e .
 +
$$
  
 
Complex numbers, double numbers and dual numbers are also called complex numbers of hyperbolic, elliptic and parabolic types, respectively. These numbers are sometimes used to represent motions in the three-dimensional spaces of Lobachevskii, Riemann and Euclid (see, for instance, [[Helical calculus|Helical calculus]]).
 
Complex numbers, double numbers and dual numbers are also called complex numbers of hyperbolic, elliptic and parabolic types, respectively. These numbers are sometimes used to represent motions in the three-dimensional spaces of Lobachevskii, Riemann and Euclid (see, for instance, [[Helical calculus|Helical calculus]]).
  
Both double and dual numbers form two-dimensional (with base 1 and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d0338609.png" />) associative-commutative algebras over the field of real numbers. As distinct from the field of complex numbers, these algebras comprise zero divisors, all these having the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386010.png" /> in the algebra of double numbers. The algebra of double numbers may be split into a direct sum of two real number fields. Hence yet another name for double numbers — splitting complex numbers. Double numbers have yet another appellation — paracomplex numbers. The algebra of dual numbers is considered not only over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386011.png" /> of real numbers, but also over an arbitrary field or commutative ring. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386012.png" /> be a commutative ring and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386013.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386014.png" />-module. The direct sum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386015.png" />-modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386016.png" /> equipped with the multiplication
+
Both double and dual numbers form two-dimensional (with base 1 and $  e $)  
 +
associative-commutative algebras over the field of real numbers. As distinct from the field of complex numbers, these algebras comprise zero divisors, all these having the form $  a \pm  ae $
 +
in the algebra of double numbers. The algebra of double numbers may be split into a direct sum of two real number fields. Hence yet another name for double numbers — splitting complex numbers. Double numbers have yet another appellation — paracomplex numbers. The algebra of dual numbers is considered not only over the field $  \mathbf R $
 +
of real numbers, but also over an arbitrary field or commutative ring. Let $  A $
 +
be a commutative ring and let $  M $
 +
be an $  A $-
 +
module. The direct sum of $  A $-
 +
modules $  A \oplus M $
 +
equipped with the multiplication
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386017.png" /></td> </tr></table>
+
$$
 +
( a , m ) ( a  ^  \prime  , m  ^  \prime  )  = ( aa  ^  \prime  , am  ^  \prime  +
 +
a  ^  \prime  m )
 +
$$
  
is a commutative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386018.png" />-algebra and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386019.png" />. It is known as the algebra of dual numbers with respect to the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386020.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386021.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386022.png" /> is identical with the ideal of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386023.png" /> which is the kernel of the augmentation homomorphism
+
is a commutative $  A $-
 +
algebra and is denoted by $  I _ {A} ( M) $.  
 +
It is known as the algebra of dual numbers with respect to the module $  M $.  
 +
The $  A $-
 +
module $  M $
 +
is identical with the ideal of the algebra $  I _ {A} ( M) $
 +
which is the kernel of the augmentation homomorphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386024.png" /></td> </tr></table>
+
$$
 +
\epsilon : I _ {A} ( M)  \rightarrow  A \  ( ( a , m ) \rightarrow a ) .
 +
$$
  
The square <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386025.png" /> of this ideal is zero, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386026.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386027.png" /> is a regular ring the converse is also true: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386028.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386029.png" />-algebra and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386030.png" /> is an ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386031.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386033.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386034.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386035.png" /> is regarded as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386036.png" />-module [[#References|[4]]].
+
The square $  M  ^ {2} $
 +
of this ideal is zero, while $  I _ {A} ( M) / M \simeq A $.  
 +
If $  A $
 +
is a regular ring the converse is also true: If $  B $
 +
is an $  A $-
 +
algebra and $  M $
 +
is an ideal in $  B $
 +
such that $  M  ^ {2} = 0 $
 +
and $  B/M \simeq A $,  
 +
then $  B \simeq I _ {A} ( M) $,  
 +
where $  M $
 +
is regarded as an $  A $-
 +
module [[#References|[4]]].
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386037.png" />, the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386038.png" /> (then denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386039.png" />) is isomorphic to the quotient algebra of the algebra of polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386040.png" /> by the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386041.png" />. Many properties of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386042.png" />-module may be formulated as properties of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386043.png" />; as a result, many problems on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386044.png" />-modules can be reduced to corresponding problems in the theory of rings [[#References|[2]]].
+
If $  M = A $,  
 +
the algebra $  I _ {A} ( M) $(
 +
then denoted by $  I _ {A} $)  
 +
is isomorphic to the quotient algebra of the algebra of polynomials $  A( T) $
 +
by the ideal $  T ^ { 2 } $.  
 +
Many properties of an $  A $-
 +
module may be formulated as properties of the algebra $  I _ {A} ( M) $;  
 +
as a result, many problems on $  A $-
 +
modules can be reduced to corresponding problems in the theory of rings [[#References|[2]]].
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386045.png" /> be an arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386046.png" />-algebra, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386047.png" /> be a homomorphism and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386048.png" /> be a derivation (cf. [[Derivation in a ring|Derivation in a ring]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386049.png" /> with values in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386050.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386051.png" />, regarded as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386052.png" />-module with respect to the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386053.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386054.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386055.png" />) will then be a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386056.png" />-algebras. Conversely, for any homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386057.png" />-algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386058.png" /> the composition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386059.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386060.png" /> is the projection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386061.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386062.png" />, is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386063.png" />-derivation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386064.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386065.png" />, regarded as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386066.png" />-module with respect to the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386067.png" />. This property of double and dual numbers is utilized for the description of the tangent space to an arbitrary functor in the category of schemes [[#References|[1]]], [[#References|[3]]].
+
Let $  B $
 +
be an arbitrary $  A $-
 +
algebra, let $  \phi : B \rightarrow A $
 +
be a homomorphism and let $  \partial  : B \rightarrow M $
 +
be a derivation (cf. [[Derivation in a ring|Derivation in a ring]]) of $  B $
 +
with values in the $  A $-
 +
module $  M $,  
 +
regarded as a $  B $-
 +
module with respect to the homomorphism $  \phi $.  
 +
The mapping $  \overline \partial \; : B \rightarrow I _ {A} ( M) $(
 +
$  b \rightarrow ( \phi ( b), \partial  ( b)) $)  
 +
will then be a homomorphism of $  A $-
 +
algebras. Conversely, for any homomorphism of $  A $-
 +
algebras $  f : B \rightarrow I _ {A} ( M) $
 +
the composition $  \epsilon  ^  \prime  \circ f : B \rightarrow M $,  
 +
where $  \epsilon  ^  \prime  : I _ {A} ( M) \rightarrow M $
 +
is the projection of $  I _ {A} ( M) $
 +
onto $  M $,  
 +
is an $  A $-
 +
derivation of $  B $
 +
with values in $  M $,  
 +
regarded as a $  B $-
 +
module with respect to the homomorphism $  \epsilon \circ f : B \rightarrow A $.  
 +
This property of double and dual numbers is utilized for the description of the tangent space to an arbitrary functor in the category of schemes [[#References|[1]]], [[#References|[3]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D. Mumford,  "Lectures on curves on an algebraic surface" , Princeton Univ. Press  (1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R. Fossum,  P.A. Griffith,  I. Reiten,  "Trivial extensions of Abelian categories. Homological algebra of trivial extensions of Abelian categories with applications to ring theory" , Springer  (1975)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Demazure,  A. Grothendieck,  "Schémas en groupes I" , ''Lect. notes in math.'' , '''151–153''' , Springer  (1970)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S. Lichtenbaum,  M. Schlessinger,  "The cotangent complex of a morphism"  ''Trans. Amer. Math. Soc.'' , '''128''' :  1  (1967)  pp. 41–70</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D. Mumford,  "Lectures on curves on an algebraic surface" , Princeton Univ. Press  (1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R. Fossum,  P.A. Griffith,  I. Reiten,  "Trivial extensions of Abelian categories. Homological algebra of trivial extensions of Abelian categories with applications to ring theory" , Springer  (1975)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Demazure,  A. Grothendieck,  "Schémas en groupes I" , ''Lect. notes in math.'' , '''151–153''' , Springer  (1970)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S. Lichtenbaum,  M. Schlessinger,  "The cotangent complex of a morphism"  ''Trans. Amer. Math. Soc.'' , '''128''' :  1  (1967)  pp. 41–70</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
An old-fashioned term for an associative algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386068.png" /> with unit element over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386069.png" /> is system of hypercomplex numbers, and an element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386070.png" /> is then called a hypercomplex number. There are (up to isomorphism) precisely three of these algebras of dimension 2: the complex numbers, the dual numbers and the double numbers.
+
An old-fashioned term for an associative algebra $  A $
 +
with unit element over $  \mathbf R $
 +
is system of hypercomplex numbers, and an element of $  A $
 +
is then called a hypercomplex number. There are (up to isomorphism) precisely three of these algebras of dimension 2: the complex numbers, the dual numbers and the double numbers.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Demazure,  P. Gabriel,  "Groupes algébriques" , '''1''' , Masson  (1970)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Demazure,  P. Gabriel,  "Groupes algébriques" , '''1''' , Masson  (1970)</TD></TR></table>

Latest revision as of 19:36, 5 June 2020


Hypercomplex numbers of the form $ a + be $, where $ a $ and $ b $ are real numbers, and where the double numbers satisfy the relation $ e ^ {2} = 1 $, while the dual numbers satisfy the relation $ e ^ {2} = 0 $( cf. Hypercomplex number). Addition of double and dual numbers is defined by

$$ ( a _ {1} + b _ {1} e) + ( a _ {2} + b _ {2} e) = \ ( a _ {1} + a _ {2} ) + ( b _ {1} + b _ {2} ) e. $$

Multiplication of double numbers is defined by

$$ ( a _ {1} + b _ {1} e) ( a _ {2} + b _ {2} e ) = \ ( a _ {1} a _ {2} + b _ {1} b _ {2} ) + ( a _ {1} b _ {2} + a _ {2} b _ {1} ) e , $$

and that of dual numbers by

$$ ( a _ {1} + b _ {1} e )( a _ {2} + b _ {2} e ) = a _ {1} a _ {2} + ( a _ {1} b _ {2} + a _ {2} b _ {1} ) e . $$

Complex numbers, double numbers and dual numbers are also called complex numbers of hyperbolic, elliptic and parabolic types, respectively. These numbers are sometimes used to represent motions in the three-dimensional spaces of Lobachevskii, Riemann and Euclid (see, for instance, Helical calculus).

Both double and dual numbers form two-dimensional (with base 1 and $ e $) associative-commutative algebras over the field of real numbers. As distinct from the field of complex numbers, these algebras comprise zero divisors, all these having the form $ a \pm ae $ in the algebra of double numbers. The algebra of double numbers may be split into a direct sum of two real number fields. Hence yet another name for double numbers — splitting complex numbers. Double numbers have yet another appellation — paracomplex numbers. The algebra of dual numbers is considered not only over the field $ \mathbf R $ of real numbers, but also over an arbitrary field or commutative ring. Let $ A $ be a commutative ring and let $ M $ be an $ A $- module. The direct sum of $ A $- modules $ A \oplus M $ equipped with the multiplication

$$ ( a , m ) ( a ^ \prime , m ^ \prime ) = ( aa ^ \prime , am ^ \prime + a ^ \prime m ) $$

is a commutative $ A $- algebra and is denoted by $ I _ {A} ( M) $. It is known as the algebra of dual numbers with respect to the module $ M $. The $ A $- module $ M $ is identical with the ideal of the algebra $ I _ {A} ( M) $ which is the kernel of the augmentation homomorphism

$$ \epsilon : I _ {A} ( M) \rightarrow A \ ( ( a , m ) \rightarrow a ) . $$

The square $ M ^ {2} $ of this ideal is zero, while $ I _ {A} ( M) / M \simeq A $. If $ A $ is a regular ring the converse is also true: If $ B $ is an $ A $- algebra and $ M $ is an ideal in $ B $ such that $ M ^ {2} = 0 $ and $ B/M \simeq A $, then $ B \simeq I _ {A} ( M) $, where $ M $ is regarded as an $ A $- module [4].

If $ M = A $, the algebra $ I _ {A} ( M) $( then denoted by $ I _ {A} $) is isomorphic to the quotient algebra of the algebra of polynomials $ A( T) $ by the ideal $ T ^ { 2 } $. Many properties of an $ A $- module may be formulated as properties of the algebra $ I _ {A} ( M) $; as a result, many problems on $ A $- modules can be reduced to corresponding problems in the theory of rings [2].

Let $ B $ be an arbitrary $ A $- algebra, let $ \phi : B \rightarrow A $ be a homomorphism and let $ \partial : B \rightarrow M $ be a derivation (cf. Derivation in a ring) of $ B $ with values in the $ A $- module $ M $, regarded as a $ B $- module with respect to the homomorphism $ \phi $. The mapping $ \overline \partial \; : B \rightarrow I _ {A} ( M) $( $ b \rightarrow ( \phi ( b), \partial ( b)) $) will then be a homomorphism of $ A $- algebras. Conversely, for any homomorphism of $ A $- algebras $ f : B \rightarrow I _ {A} ( M) $ the composition $ \epsilon ^ \prime \circ f : B \rightarrow M $, where $ \epsilon ^ \prime : I _ {A} ( M) \rightarrow M $ is the projection of $ I _ {A} ( M) $ onto $ M $, is an $ A $- derivation of $ B $ with values in $ M $, regarded as a $ B $- module with respect to the homomorphism $ \epsilon \circ f : B \rightarrow A $. This property of double and dual numbers is utilized for the description of the tangent space to an arbitrary functor in the category of schemes [1], [3].

References

[1] D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966)
[2] R. Fossum, P.A. Griffith, I. Reiten, "Trivial extensions of Abelian categories. Homological algebra of trivial extensions of Abelian categories with applications to ring theory" , Springer (1975)
[3] M. Demazure, A. Grothendieck, "Schémas en groupes I" , Lect. notes in math. , 151–153 , Springer (1970)
[4] S. Lichtenbaum, M. Schlessinger, "The cotangent complex of a morphism" Trans. Amer. Math. Soc. , 128 : 1 (1967) pp. 41–70

Comments

An old-fashioned term for an associative algebra $ A $ with unit element over $ \mathbf R $ is system of hypercomplex numbers, and an element of $ A $ is then called a hypercomplex number. There are (up to isomorphism) precisely three of these algebras of dimension 2: the complex numbers, the dual numbers and the double numbers.

References

[a1] M. Demazure, P. Gabriel, "Groupes algébriques" , 1 , Masson (1970)
How to Cite This Entry:
Double and dual numbers. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Double_and_dual_numbers&oldid=46769
This article was adapted from an original article by I.V. Dolgachev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article