Difference between revisions of "Difference cochain and chain"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | d0316601.png | ||
+ | $#A+1 = 58 n = 0 | ||
+ | $#C+1 = 58 : ~/encyclopedia/old_files/data/D031/D.0301660 Difference cochain and chain | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A difference cochain is an [[Obstruction|obstruction]] to the extension of a homotopy between mappings. Let $ X $ | |
+ | be some cellular space, let $ Y $ | ||
+ | be a simply-connected topological space and suppose, moreover, that one is given two mappings $ f, g: X \rightarrow Y $ | ||
+ | and a homotopy | ||
− | + | $$ | |
+ | F \ \mathop{\rm on} ( X \times 0) \cup | ||
+ | ( X ^ {n - 1 } \times I ) \cup ( X \times 1) | ||
+ | $$ | ||
− | + | (where $ I = [ 0, 1] $ | |
+ | and $ X ^ {n} $ | ||
+ | is the $ n $- | ||
+ | dimensional skeleton of $ X $) | ||
+ | between these mappings on the $ ( n - 1) $- | ||
+ | dimensional skeleton. For every oriented $ n $- | ||
+ | dimensional cell $ e ^ {n} $ | ||
+ | of $ X $, | ||
+ | the restriction of $ F $ | ||
+ | to $ \partial ( \overline{e}\; \times I) $ | ||
+ | gives a mapping $ S ^ {n} \rightarrow Y $( | ||
+ | $ S ^ {n} $ | ||
+ | is the $ n $- | ||
+ | dimensional sphere) and hence an element of the group $ \pi _ {n} ( Y) $. | ||
+ | Thus there arises the cochain $ d ^ {n} ( f, g) \in C ^ {n} ( X; \pi _ {n} ( Y)) $( | ||
+ | the notation $ d _ {F} ^ {n} ( f, g) $ | ||
+ | would be more precise), which is called the difference cochain; the cochain $ d ^ {n} ( f, g) $ | ||
+ | is an obstruction to the extension of $ F $ | ||
+ | to | ||
− | + | $$ | |
+ | ( X \times 0 ) \cup ( X ^ {n} \times I ) \cup ( X \times 1) = \ | ||
+ | ( X \times I) ^ {n - 1 } \cup ( X \times \{ 0, 1 \} ) . | ||
+ | $$ | ||
− | + | The following statements hold: 1) $ d ^ {n} ( f, g) = 0 $ | |
+ | if and only if the homotopy between $ f $ | ||
+ | and $ g $ | ||
+ | can be extended to $ X ^ {n} $; | ||
+ | 2) the cochain | ||
− | + | $$ | |
+ | d ^ {n} ( f, g) \in \ | ||
+ | C ^ {n} ( X \times I, X \times \{ 0, 1 \} ; \pi _ {n} ( Y)) | ||
+ | $$ | ||
− | + | is a cocycle; 3) the cohomology class | |
− | + | $$ | |
+ | [ d ^ {n} ( f, g)] \in \ | ||
+ | H ^ {n} ( X \times I, X \times \{ 0, 1 \} ; \pi _ {n} ( Y) ) | ||
+ | $$ | ||
− | 2) | + | vanishes if and only if there is a homotopy between $ f $ |
+ | and $ g $ | ||
+ | on $ X ^ {n} $ | ||
+ | that coincides with $ F $ | ||
+ | on $ X ^ {n - 2 } $. | ||
+ | Without loss of generality one can assume that $ f $ | ||
+ | and $ g $ | ||
+ | coincide on $ X ^ {n - 1 } $ | ||
+ | and that $ F ( x, t) = f ( x) = g ( x) $ | ||
+ | for $ x \in X ^ {n - 2 } $. | ||
+ | Then the following statements hold: | ||
− | + | 1) $ d ^ {n} ( f, g) = - d ^ {n} ( g, f ) $, | |
+ | in particular $ d ^ {n} ( f, f ) = 0 $; | ||
− | + | 2) $ d ^ {n} ( f, g) + d ^ {n} ( g, h) = d ^ {n} ( f, h) $; | |
− | + | 3) for any mapping $ f: X \rightarrow Y $ | |
+ | and for any cochain $ d \in C ^ {n} ( X; \pi _ {n} ( Y)) $ | ||
+ | there is a mapping $ g $ | ||
+ | for which $ f \mid _ {X ^ {n - 1 } } = g \mid _ {X ^ {n - 1 } } $ | ||
+ | and $ d ^ {n} ( f, g) = d $. | ||
− | + | Now suppose one is given two mappings $ f, g: X ^ {n} \rightarrow Y $, | |
+ | $ f \mid _ {X ^ {n - 1 } } = g \mid _ {X ^ {n - 1 } } $ | ||
+ | and let $ c _ {f} ^ {n + 1 } $ | ||
+ | and $ c _ {g} ^ {n + 1 } $ | ||
+ | be the obstructions to the extensions of the corresponding mappings. The role of the difference cochain in the theory of obstructions is explained by the following proposition: | ||
+ | $$ | ||
+ | c _ {f} ^ {n + 1 } - | ||
+ | c _ {g} ^ {n + 1 } = \ | ||
+ | \delta d ^ {n} ( f, g). | ||
+ | $$ | ||
+ | Thus, if $ g $ | ||
+ | can be extended to $ X ^ {n + 1 } $, | ||
+ | then $ [ c _ {f} ^ {n + 1 } ] = 0 $ | ||
+ | and if $ [ c _ {f} ^ {n + 1 } ] = 0 $, | ||
+ | then $ f \mid _ {X ^ {n - 1 } } $ | ||
+ | can be extended to $ X ^ {n + 1 } $. | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.W. Whitehead, "Elements of homotopy theory" , Springer (1978) pp. 228</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.W. Whitehead, "Elements of homotopy theory" , Springer (1978) pp. 228</TD></TR></table> |
Latest revision as of 17:33, 5 June 2020
A difference cochain is an obstruction to the extension of a homotopy between mappings. Let $ X $
be some cellular space, let $ Y $
be a simply-connected topological space and suppose, moreover, that one is given two mappings $ f, g: X \rightarrow Y $
and a homotopy
$$ F \ \mathop{\rm on} ( X \times 0) \cup ( X ^ {n - 1 } \times I ) \cup ( X \times 1) $$
(where $ I = [ 0, 1] $ and $ X ^ {n} $ is the $ n $- dimensional skeleton of $ X $) between these mappings on the $ ( n - 1) $- dimensional skeleton. For every oriented $ n $- dimensional cell $ e ^ {n} $ of $ X $, the restriction of $ F $ to $ \partial ( \overline{e}\; \times I) $ gives a mapping $ S ^ {n} \rightarrow Y $( $ S ^ {n} $ is the $ n $- dimensional sphere) and hence an element of the group $ \pi _ {n} ( Y) $. Thus there arises the cochain $ d ^ {n} ( f, g) \in C ^ {n} ( X; \pi _ {n} ( Y)) $( the notation $ d _ {F} ^ {n} ( f, g) $ would be more precise), which is called the difference cochain; the cochain $ d ^ {n} ( f, g) $ is an obstruction to the extension of $ F $ to
$$ ( X \times 0 ) \cup ( X ^ {n} \times I ) \cup ( X \times 1) = \ ( X \times I) ^ {n - 1 } \cup ( X \times \{ 0, 1 \} ) . $$
The following statements hold: 1) $ d ^ {n} ( f, g) = 0 $ if and only if the homotopy between $ f $ and $ g $ can be extended to $ X ^ {n} $; 2) the cochain
$$ d ^ {n} ( f, g) \in \ C ^ {n} ( X \times I, X \times \{ 0, 1 \} ; \pi _ {n} ( Y)) $$
is a cocycle; 3) the cohomology class
$$ [ d ^ {n} ( f, g)] \in \ H ^ {n} ( X \times I, X \times \{ 0, 1 \} ; \pi _ {n} ( Y) ) $$
vanishes if and only if there is a homotopy between $ f $ and $ g $ on $ X ^ {n} $ that coincides with $ F $ on $ X ^ {n - 2 } $. Without loss of generality one can assume that $ f $ and $ g $ coincide on $ X ^ {n - 1 } $ and that $ F ( x, t) = f ( x) = g ( x) $ for $ x \in X ^ {n - 2 } $. Then the following statements hold:
1) $ d ^ {n} ( f, g) = - d ^ {n} ( g, f ) $, in particular $ d ^ {n} ( f, f ) = 0 $;
2) $ d ^ {n} ( f, g) + d ^ {n} ( g, h) = d ^ {n} ( f, h) $;
3) for any mapping $ f: X \rightarrow Y $ and for any cochain $ d \in C ^ {n} ( X; \pi _ {n} ( Y)) $ there is a mapping $ g $ for which $ f \mid _ {X ^ {n - 1 } } = g \mid _ {X ^ {n - 1 } } $ and $ d ^ {n} ( f, g) = d $.
Now suppose one is given two mappings $ f, g: X ^ {n} \rightarrow Y $, $ f \mid _ {X ^ {n - 1 } } = g \mid _ {X ^ {n - 1 } } $ and let $ c _ {f} ^ {n + 1 } $ and $ c _ {g} ^ {n + 1 } $ be the obstructions to the extensions of the corresponding mappings. The role of the difference cochain in the theory of obstructions is explained by the following proposition:
$$ c _ {f} ^ {n + 1 } - c _ {g} ^ {n + 1 } = \ \delta d ^ {n} ( f, g). $$
Thus, if $ g $ can be extended to $ X ^ {n + 1 } $, then $ [ c _ {f} ^ {n + 1 } ] = 0 $ and if $ [ c _ {f} ^ {n + 1 } ] = 0 $, then $ f \mid _ {X ^ {n - 1 } } $ can be extended to $ X ^ {n + 1 } $.
Comments
References
[a1] | G.W. Whitehead, "Elements of homotopy theory" , Springer (1978) pp. 228 |
Difference cochain and chain. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Difference_cochain_and_chain&oldid=46652