Difference between revisions of "Dichotomy"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | d0316001.png | ||
+ | $#A+1 = 15 n = 0 | ||
+ | $#C+1 = 15 : ~/encyclopedia/old_files/data/D031/D.0301600 Dichotomy | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The property that for a linear system of ordinary differential equations | The property that for a linear system of ordinary differential equations | ||
− | + | $$ | |
+ | \dot{x} = A ( t) x ,\ x \in E ^ {n} ,\ t \geq 0 , | ||
+ | $$ | ||
− | with bounded continuous coefficients, there are positive constants | + | with bounded continuous coefficients, there are positive constants $ K $, |
+ | $ L $, | ||
+ | $ \alpha $, | ||
+ | and $ \beta $ | ||
+ | such that there exists a decomposition $ E ^ {n} = E ^ {m} + E ^ {n-} m $ | ||
+ | for which | ||
− | + | $$ | |
+ | x ( 0) \in E ^ {m} \Rightarrow \| x ( t) \| \leq K \| x ( \tau ) \| \ | ||
+ | \mathop{\rm exp} [ - \alpha ( t - \tau ) ] , | ||
+ | $$ | ||
− | + | $$ | |
+ | t \geq \tau \geq 0 ; | ||
+ | $$ | ||
− | + | $$ | |
+ | x ( 0) \in E ^ {n-} m \Rightarrow \| x ( t) \| \leq L | ||
+ | \| x ( \tau ) \| \mathop{\rm exp} [ - \beta ( \tau - t ) ] , | ||
+ | $$ | ||
− | + | $$ | |
+ | \tau \geq t \geq 0 | ||
+ | $$ | ||
− | (exponential dichotomy; if | + | (exponential dichotomy; if $ \alpha = \beta = 0 $, |
+ | one has ordinary dichotomy). The presence of exponential dichotomy is equivalent to saying that the inhomogeneous system | ||
− | + | $$ | |
+ | \dot{x} = A ( t) x + f ( t) | ||
+ | $$ | ||
− | has, for any bounded continuous function | + | has, for any bounded continuous function $ f ( t) $, |
+ | $ t \geq 0 $, | ||
+ | at least one bounded solution on $ [ 0 , \infty ) $[[#References|[1]]]. The theory of dichotomy [[#References|[2]]], transferred to equations in Banach spaces, is also employed in the study of flows and cascades on smooth manifolds [[#References|[4]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Perron, "Stability of differential equations" ''Math. Z.'' , '''32''' : 5 (1930) pp. 703–728</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H.H. Scheffer, "Linear differential equations and function spaces" , Acad. Press (1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> Yu.L. Daletskii, M.G. Krein, "Stability of solutions of differential equations in Banach space" , Amer. Math. Soc. (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D.V. Anosov, "Geodesic flows on closed Riemann manifolds with negative curvature" ''Proc. Steklov Inst. Math.'' , '''90''' (1969) ''Trudy Mat. Inst. Steklov.'' , '''90''' (1967)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Perron, "Stability of differential equations" ''Math. Z.'' , '''32''' : 5 (1930) pp. 703–728</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H.H. Scheffer, "Linear differential equations and function spaces" , Acad. Press (1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> Yu.L. Daletskii, M.G. Krein, "Stability of solutions of differential equations in Banach space" , Amer. Math. Soc. (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D.V. Anosov, "Geodesic flows on closed Riemann manifolds with negative curvature" ''Proc. Steklov Inst. Math.'' , '''90''' (1969) ''Trudy Mat. Inst. Steklov.'' , '''90''' (1967)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.I. Oseledec, "A multiplicative ergodic theorem. Characteristic Lyapunov numbers for dynamical systems" ''Trans. Moscow Math. Soc.'' , '''19''' (1969) pp. 197–232 ''Trudy Moskov. Mat. Obshch.'' , '''19''' (1968) pp. 179–210</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.I. Oseledec, "A multiplicative ergodic theorem. Characteristic Lyapunov numbers for dynamical systems" ''Trans. Moscow Math. Soc.'' , '''19''' (1969) pp. 197–232 ''Trudy Moskov. Mat. Obshch.'' , '''19''' (1968) pp. 179–210</TD></TR></table> |
Latest revision as of 17:33, 5 June 2020
The property that for a linear system of ordinary differential equations
$$ \dot{x} = A ( t) x ,\ x \in E ^ {n} ,\ t \geq 0 , $$
with bounded continuous coefficients, there are positive constants $ K $, $ L $, $ \alpha $, and $ \beta $ such that there exists a decomposition $ E ^ {n} = E ^ {m} + E ^ {n-} m $ for which
$$ x ( 0) \in E ^ {m} \Rightarrow \| x ( t) \| \leq K \| x ( \tau ) \| \ \mathop{\rm exp} [ - \alpha ( t - \tau ) ] , $$
$$ t \geq \tau \geq 0 ; $$
$$ x ( 0) \in E ^ {n-} m \Rightarrow \| x ( t) \| \leq L \| x ( \tau ) \| \mathop{\rm exp} [ - \beta ( \tau - t ) ] , $$
$$ \tau \geq t \geq 0 $$
(exponential dichotomy; if $ \alpha = \beta = 0 $, one has ordinary dichotomy). The presence of exponential dichotomy is equivalent to saying that the inhomogeneous system
$$ \dot{x} = A ( t) x + f ( t) $$
has, for any bounded continuous function $ f ( t) $, $ t \geq 0 $, at least one bounded solution on $ [ 0 , \infty ) $[1]. The theory of dichotomy [2], transferred to equations in Banach spaces, is also employed in the study of flows and cascades on smooth manifolds [4].
References
[1] | O. Perron, "Stability of differential equations" Math. Z. , 32 : 5 (1930) pp. 703–728 |
[2] | H.H. Scheffer, "Linear differential equations and function spaces" , Acad. Press (1966) |
[3] | Yu.L. Daletskii, M.G. Krein, "Stability of solutions of differential equations in Banach space" , Amer. Math. Soc. (1974) (Translated from Russian) |
[4] | D.V. Anosov, "Geodesic flows on closed Riemann manifolds with negative curvature" Proc. Steklov Inst. Math. , 90 (1969) Trudy Mat. Inst. Steklov. , 90 (1967) |
Comments
References
[a1] | V.I. Oseledec, "A multiplicative ergodic theorem. Characteristic Lyapunov numbers for dynamical systems" Trans. Moscow Math. Soc. , 19 (1969) pp. 197–232 Trudy Moskov. Mat. Obshch. , 19 (1968) pp. 179–210 |
Dichotomy. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dichotomy&oldid=46647