Namespaces
Variants
Actions

Difference between revisions of "Derived automorphism"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''in ergodic theory''
+
<!--
 +
d0312701.png
 +
$#A+1 = 29 n = 0
 +
$#C+1 = 29 : ~/encyclopedia/old_files/data/D031/D.0301270 Derived automorphism
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312701.png" /> defined by using an automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312702.png" /> of a [[Measure space|measure space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312703.png" /> and a measurable subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312704.png" /> of positive measure such that almost-all points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312705.png" /> return to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312706.png" /> under the action of iterates of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312707.png" />. For every such point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312708.png" /> its image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312709.png" /> is defined as that point of the trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127010.png" /> at which this trajectory returns to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127011.png" /> for the first time after <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127012.png" /> (according to the Poincaré recurrence theorem, cf. [[Poincaré return theorem|Poincaré return theorem]], the condition for almost-all points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127013.png" /> to return to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127014.png" /> at some time is automatically satisfied if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127015.png" />). The transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127016.png" /> turns out to be an automorphism (more precisely, an automorphism modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127017.png" />) of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127018.png" /> with the measure induced on it (this measure is the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127019.png" /> considered only on subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127020.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127021.png" /> then this measure is usually normalized).
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Conversely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127022.png" /> (this condition is automatically satisfied if the automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127023.png" /> is ergodic), then the original automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127024.png" /> can be recovered (up to conjugation by means of an isomorphism of measure spaces) from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127025.png" /> and the time of first return
+
''in ergodic theory''
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127026.png" /></td> </tr></table>
+
A transformation  $  T _ {X} $
 +
defined by using an automorphism  $  T $
 +
of a [[Measure space|measure space]]  $  ( M , \mu ) $
 +
and a measurable subset  $  X \subset  M $
 +
of positive measure such that almost-all points of  $  X $
 +
return to  $  X $
 +
under the action of iterates of  $  T $.  
 +
For every such point  $  x $
 +
its image  $  T _ {X} ( x) $
 +
is defined as that point of the trajectory  $  T  ^ {n} x $
 +
at which this trajectory returns to  $  X $
 +
for the first time after  $  x $(
 +
according to the Poincaré recurrence theorem, cf. [[Poincaré return theorem|Poincaré return theorem]], the condition for almost-all points of  $  X $
 +
to return to  $  X $
 +
at some time is automatically satisfied if  $  \mu ( M) < \infty $).  
 +
The transformation  $  T _ {X} $
 +
turns out to be an automorphism (more precisely, an automorphism modulo  $  0 $)
 +
of the space  $  X $
 +
with the measure induced on it (this measure is the measure  $  \mu $
 +
considered only on subsets of  $  X $;
 +
if  $  \mu ( X) < \infty $
 +
then this measure is usually normalized).
  
Namely, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127027.png" /> is the [[Special automorphism|special automorphism]] constructed from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127028.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127029.png" />.
+
Conversely, if  $  \cup _ {n \geq  0 }  T  ^ {n} X = M $(
 +
this condition is automatically satisfied if the automorphism $  T $
 +
is ergodic), then the original automorphism $  T $
 +
can be recovered (up to conjugation by means of an isomorphism of measure spaces) from $  T _ {X} $
 +
and the time of first return
  
 +
$$
 +
n _ {X} ( x)  =  \min \{ {n > 0 } : {T  ^ {n} x \in X } \}
 +
.
 +
$$
  
 +
Namely,  $  T $
 +
is the [[Special automorphism|special automorphism]] constructed from  $  T _ {X} $
 +
and  $  n _ {X} $.
  
 
====Comments====
 
====Comments====

Latest revision as of 17:33, 5 June 2020


in ergodic theory

A transformation $ T _ {X} $ defined by using an automorphism $ T $ of a measure space $ ( M , \mu ) $ and a measurable subset $ X \subset M $ of positive measure such that almost-all points of $ X $ return to $ X $ under the action of iterates of $ T $. For every such point $ x $ its image $ T _ {X} ( x) $ is defined as that point of the trajectory $ T ^ {n} x $ at which this trajectory returns to $ X $ for the first time after $ x $( according to the Poincaré recurrence theorem, cf. Poincaré return theorem, the condition for almost-all points of $ X $ to return to $ X $ at some time is automatically satisfied if $ \mu ( M) < \infty $). The transformation $ T _ {X} $ turns out to be an automorphism (more precisely, an automorphism modulo $ 0 $) of the space $ X $ with the measure induced on it (this measure is the measure $ \mu $ considered only on subsets of $ X $; if $ \mu ( X) < \infty $ then this measure is usually normalized).

Conversely, if $ \cup _ {n \geq 0 } T ^ {n} X = M $( this condition is automatically satisfied if the automorphism $ T $ is ergodic), then the original automorphism $ T $ can be recovered (up to conjugation by means of an isomorphism of measure spaces) from $ T _ {X} $ and the time of first return

$$ n _ {X} ( x) = \min \{ {n > 0 } : {T ^ {n} x \in X } \} . $$

Namely, $ T $ is the special automorphism constructed from $ T _ {X} $ and $ n _ {X} $.

Comments

For automorphism of a measure space cf. Measure-preserving transformation.

In the literature also induced or derivative automorphism are used. See [a1] or [a2].

References

[a1] S. Kakutani, "Induced measure preserving transformations" Proc. Japan. Acad. , 19 (1943) pp. 635–641
[a2] K. Petersen, "Ergodic theory" , Cambridge Univ. Press (1983) pp. 39
How to Cite This Entry:
Derived automorphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Derived_automorphism&oldid=46633
This article was adapted from an original article by D.V. Anosov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article