|
|
Line 1: |
Line 1: |
− | ''in ergodic theory''
| + | <!-- |
| + | d0312701.png |
| + | $#A+1 = 29 n = 0 |
| + | $#C+1 = 29 : ~/encyclopedia/old_files/data/D031/D.0301270 Derived automorphism |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312701.png" /> defined by using an automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312702.png" /> of a [[Measure space|measure space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312703.png" /> and a measurable subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312704.png" /> of positive measure such that almost-all points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312705.png" /> return to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312706.png" /> under the action of iterates of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312707.png" />. For every such point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312708.png" /> its image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d0312709.png" /> is defined as that point of the trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127010.png" /> at which this trajectory returns to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127011.png" /> for the first time after <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127012.png" /> (according to the Poincaré recurrence theorem, cf. [[Poincaré return theorem|Poincaré return theorem]], the condition for almost-all points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127013.png" /> to return to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127014.png" /> at some time is automatically satisfied if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127015.png" />). The transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127016.png" /> turns out to be an automorphism (more precisely, an automorphism modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127017.png" />) of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127018.png" /> with the measure induced on it (this measure is the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127019.png" /> considered only on subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127020.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127021.png" /> then this measure is usually normalized).
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Conversely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127022.png" /> (this condition is automatically satisfied if the automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127023.png" /> is ergodic), then the original automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127024.png" /> can be recovered (up to conjugation by means of an isomorphism of measure spaces) from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127025.png" /> and the time of first return
| + | ''in ergodic theory'' |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127026.png" /></td> </tr></table>
| + | A transformation $ T _ {X} $ |
| + | defined by using an automorphism $ T $ |
| + | of a [[Measure space|measure space]] $ ( M , \mu ) $ |
| + | and a measurable subset $ X \subset M $ |
| + | of positive measure such that almost-all points of $ X $ |
| + | return to $ X $ |
| + | under the action of iterates of $ T $. |
| + | For every such point $ x $ |
| + | its image $ T _ {X} ( x) $ |
| + | is defined as that point of the trajectory $ T ^ {n} x $ |
| + | at which this trajectory returns to $ X $ |
| + | for the first time after $ x $( |
| + | according to the Poincaré recurrence theorem, cf. [[Poincaré return theorem|Poincaré return theorem]], the condition for almost-all points of $ X $ |
| + | to return to $ X $ |
| + | at some time is automatically satisfied if $ \mu ( M) < \infty $). |
| + | The transformation $ T _ {X} $ |
| + | turns out to be an automorphism (more precisely, an automorphism modulo $ 0 $) |
| + | of the space $ X $ |
| + | with the measure induced on it (this measure is the measure $ \mu $ |
| + | considered only on subsets of $ X $; |
| + | if $ \mu ( X) < \infty $ |
| + | then this measure is usually normalized). |
| | | |
− | Namely, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127027.png" /> is the [[Special automorphism|special automorphism]] constructed from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127028.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031270/d03127029.png" />.
| + | Conversely, if $ \cup _ {n \geq 0 } T ^ {n} X = M $( |
| + | this condition is automatically satisfied if the automorphism $ T $ |
| + | is ergodic), then the original automorphism $ T $ |
| + | can be recovered (up to conjugation by means of an isomorphism of measure spaces) from $ T _ {X} $ |
| + | and the time of first return |
| | | |
| + | $$ |
| + | n _ {X} ( x) = \min \{ {n > 0 } : {T ^ {n} x \in X } \} |
| + | . |
| + | $$ |
| | | |
| + | Namely, $ T $ |
| + | is the [[Special automorphism|special automorphism]] constructed from $ T _ {X} $ |
| + | and $ n _ {X} $. |
| | | |
| ====Comments==== | | ====Comments==== |
in ergodic theory
A transformation $ T _ {X} $
defined by using an automorphism $ T $
of a measure space $ ( M , \mu ) $
and a measurable subset $ X \subset M $
of positive measure such that almost-all points of $ X $
return to $ X $
under the action of iterates of $ T $.
For every such point $ x $
its image $ T _ {X} ( x) $
is defined as that point of the trajectory $ T ^ {n} x $
at which this trajectory returns to $ X $
for the first time after $ x $(
according to the Poincaré recurrence theorem, cf. Poincaré return theorem, the condition for almost-all points of $ X $
to return to $ X $
at some time is automatically satisfied if $ \mu ( M) < \infty $).
The transformation $ T _ {X} $
turns out to be an automorphism (more precisely, an automorphism modulo $ 0 $)
of the space $ X $
with the measure induced on it (this measure is the measure $ \mu $
considered only on subsets of $ X $;
if $ \mu ( X) < \infty $
then this measure is usually normalized).
Conversely, if $ \cup _ {n \geq 0 } T ^ {n} X = M $(
this condition is automatically satisfied if the automorphism $ T $
is ergodic), then the original automorphism $ T $
can be recovered (up to conjugation by means of an isomorphism of measure spaces) from $ T _ {X} $
and the time of first return
$$
n _ {X} ( x) = \min \{ {n > 0 } : {T ^ {n} x \in X } \}
.
$$
Namely, $ T $
is the special automorphism constructed from $ T _ {X} $
and $ n _ {X} $.
For automorphism of a measure space cf. Measure-preserving transformation.
In the literature also induced or derivative automorphism are used. See [a1] or [a2].
References
[a1] | S. Kakutani, "Induced measure preserving transformations" Proc. Japan. Acad. , 19 (1943) pp. 635–641 |
[a2] | K. Petersen, "Ergodic theory" , Cambridge Univ. Press (1983) pp. 39 |