Difference between revisions of "Derivations, module of"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | d0312501.png | ||
+ | $#A+1 = 84 n = 0 | ||
+ | $#C+1 = 84 : ~/encyclopedia/old_files/data/D031/D.0301250 Derivations, module of, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''module of Kähler derivations'' | ''module of Kähler derivations'' | ||
− | An algebraic analogue of the concept of the differential of a function. Let | + | An algebraic analogue of the concept of the differential of a function. Let $ A $ |
+ | be a commutative ring regarded as an algebra over a subring $ B $ | ||
+ | of it. The module of derivations of the $ B $- | ||
+ | algebra $ A $ | ||
+ | is defined as the quotient module $ \Omega _ {A/B} ^ {1} $ | ||
+ | of the free $ A $- | ||
+ | module with basis $ ( dx ) _ {x \in A } $ | ||
+ | by the submodule generated by the elements of the type | ||
− | + | $$ | |
+ | d ( x + y ) - dx - dy ,\ d ( xy ) - x dy - y dx,\ db , | ||
+ | $$ | ||
− | where | + | where $ x, y \in A $, |
+ | $ b \in B $. | ||
+ | The canonical homomorphism of $ A $- | ||
+ | modules $ d: A \rightarrow \Omega _ {A/B} ^ {1} $ | ||
+ | is a $ B $- | ||
+ | derivation in the ring $ A $( | ||
+ | cf. [[Derivation in a ring|Derivation in a ring]]) with values in the $ A $- | ||
+ | module $ \Omega _ {A/B} ^ {1} $ | ||
+ | having the following universality property: For any $ B $- | ||
+ | derivation $ \partial : A \rightarrow M $ | ||
+ | with values in an $ A $- | ||
+ | module $ M $ | ||
+ | there exists a uniquely defined homomorphism of $ A $- | ||
+ | modules $ \overline \partial \; : \Omega _ {A/B} ^ {1} \rightarrow M $ | ||
+ | such that $ \overline \partial \; \circ d = \partial $. | ||
+ | The correspondence $ \partial \rightarrow \overline \partial \; $ | ||
+ | defines an isomorphism of $ A $- | ||
+ | modules: | ||
− | + | $$ | |
+ | \mathop{\rm Der} _ {B} ( A , M) \simeq \mathop{\rm Hom} _ {A} ( \Omega _ {A/B} ^ {1} , M). | ||
+ | $$ | ||
− | In particular, the module of derivations of a ring | + | In particular, the module of derivations of a ring $ A $ |
+ | into itself is isomorphic to the dual $ A $- | ||
+ | module to the module $ \Omega _ {A/B} ^ {1} $. | ||
− | If | + | If $ A \otimes _ {B} A $ |
+ | is regarded as an $ A $- | ||
+ | algebra with respect to the homomorphism | ||
− | + | $$ | |
+ | A \rightarrow A \otimes _ {B} A \ ( a \rightarrow a \otimes 1 ) | ||
+ | $$ | ||
− | and | + | and $ I $ |
+ | is the ideal generated by the elements of the type | ||
− | + | $$ | |
+ | a \otimes 1 - 1 \otimes a , | ||
+ | $$ | ||
− | then the | + | then the $ A $- |
+ | module $ \Omega _ {A/B} ^ {1} $ | ||
+ | is isomorphic to the $ A $- | ||
+ | module $ I / I ^ {2} $. | ||
− | The module | + | The module $ \Omega ^ {1} $ |
+ | of derivations has the following properties: | ||
− | 1) If | + | 1) If $ S $ |
+ | is a multiplicatively closed set in $ A $ | ||
+ | and $ T = S \cap B $, | ||
+ | then there is a canonical localization isomorphism: | ||
− | + | $$ | |
+ | ( \Omega _ {A/B} ^ {1} ) _ {S} \simeq \Omega _ {A _ {S} / B _ {T} } ^ {1} . | ||
+ | $$ | ||
− | 2) If | + | 2) If $ \phi : A \rightarrow A _ {1} $ |
+ | is a homomorphism of $ B $- | ||
+ | algebras, then there is a canonical exact sequence of $ A _ {1} $- | ||
+ | modules: | ||
− | + | $$ | |
+ | \Omega _ {A/B} ^ {1} \otimes _ { A } A _ {1} \mathop \rightarrow \limits ^ \alpha \Omega _ {A _ {1} / B } ^ {1} \rightarrow \Omega _ {A _ {1} / A } \rightarrow 0 . | ||
+ | $$ | ||
− | 3) If | + | 3) If $ I $ |
+ | is an ideal of the ring $ A $ | ||
+ | and $ A _ {1} = A/I $, | ||
+ | then there is an exact canonical sequence of $ A _ {1} $- | ||
+ | modules: | ||
− | + | $$ | |
+ | I / I ^ {2} \rightarrow ^ { {d _ 1} } \Omega _ {A/B} ^ {1} \otimes _ { A } A _ {1} \rightarrow \ | ||
+ | \Omega _ {A _ {1} / B } ^ {1} \rightarrow 0 , | ||
+ | $$ | ||
− | where the homomorphism | + | where the homomorphism $ d _ {1} $ |
+ | is induced by the derivation $ d: A \rightarrow \Omega _ {A/B} ^ {1} $. | ||
− | 4) A field | + | 4) A field $ K $ |
+ | is a separable extension of a field $ k $ | ||
+ | of finite transcendence degree $ n $ | ||
+ | if and only if there is a $ K $- | ||
+ | space isomorphism $ \Omega _ {K/k} ^ {1} \simeq K ^ {n} $. | ||
− | 5) If | + | 5) If $ A = B [ T _ {1} \dots T _ {n} ] $ |
+ | is an algebra of polynomials, then $ \Omega _ {A/B} ^ {1} $ | ||
+ | is a free $ A $- | ||
+ | module with as basis $ dT _ {1} \dots dT _ {n} $. | ||
− | 6) An algebra | + | 6) An algebra $ A $ |
+ | of finite type over a perfect field $ k $ | ||
+ | is a regular ring if and only if the $ A $- | ||
+ | module $ \Omega _ {A/k} ^ {1} $ | ||
+ | is projective. | ||
− | 7) Concerning 2) above, the | + | 7) Concerning 2) above, the $ A $- |
+ | algebra $ A _ {1} $ | ||
+ | of finite type is smooth over $ A $ | ||
+ | if and only if the homomorphism $ \alpha $ | ||
+ | is injective while the module $ \Omega _ {A _ {1} / A } ^ {1} $ | ||
+ | of derivations is projective and its rank is equal to the relative dimension of $ A _ {1} $ | ||
+ | over $ A $. | ||
− | The | + | The $ i $- |
+ | th exterior power $ \wedge ^ {i} \Omega _ {A/B} ^ {1} $ | ||
+ | of the module $ \Omega _ {A/B} ^ {1} $ | ||
+ | of derivations is said to be the module of (differential) $ i $- | ||
+ | forms of the $ B $- | ||
+ | algebra $ A $ | ||
+ | and is denoted by $ \Omega _ {A/B} ^ {i} $. | ||
− | By virtue of 1) it is possible to define, for any morphism of schemes | + | By virtue of 1) it is possible to define, for any morphism of schemes $ X \rightarrow Y $, |
+ | the sheaf of relative (or Kähler) derivations $ \Omega _ {X/Y} ^ {1} $ | ||
+ | and its exterior powers $ \Omega _ {X/Y} ^ {i} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Grothendieck (ed.) et al. (ed.) , ''Revêtements étales et groupe fondamental. SGA 1'' , ''Lect. notes in math.'' , '''224''' , Springer (1971) {{MR|0354651}} {{ZBL|1039.14001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géométrie algébrique IV. Etude locale des schémes et des morphismes de schémes" ''Publ. Math. IHES'' , '''20''' (1964) {{MR|0173675}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Kähler, "Algebra und Differentialrechnung" , Deutsch. Verlag Wissenschaft. (1958) {{MR|0094593}} {{ZBL|0079.05701}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Grothendieck (ed.) et al. (ed.) , ''Revêtements étales et groupe fondamental. SGA 1'' , ''Lect. notes in math.'' , '''224''' , Springer (1971) {{MR|0354651}} {{ZBL|1039.14001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géométrie algébrique IV. Etude locale des schémes et des morphismes de schémes" ''Publ. Math. IHES'' , '''20''' (1964) {{MR|0173675}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Kähler, "Algebra und Differentialrechnung" , Deutsch. Verlag Wissenschaft. (1958) {{MR|0094593}} {{ZBL|0079.05701}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> |
Revision as of 17:32, 5 June 2020
module of Kähler derivations
An algebraic analogue of the concept of the differential of a function. Let $ A $ be a commutative ring regarded as an algebra over a subring $ B $ of it. The module of derivations of the $ B $- algebra $ A $ is defined as the quotient module $ \Omega _ {A/B} ^ {1} $ of the free $ A $- module with basis $ ( dx ) _ {x \in A } $ by the submodule generated by the elements of the type
$$ d ( x + y ) - dx - dy ,\ d ( xy ) - x dy - y dx,\ db , $$
where $ x, y \in A $, $ b \in B $. The canonical homomorphism of $ A $- modules $ d: A \rightarrow \Omega _ {A/B} ^ {1} $ is a $ B $- derivation in the ring $ A $( cf. Derivation in a ring) with values in the $ A $- module $ \Omega _ {A/B} ^ {1} $ having the following universality property: For any $ B $- derivation $ \partial : A \rightarrow M $ with values in an $ A $- module $ M $ there exists a uniquely defined homomorphism of $ A $- modules $ \overline \partial \; : \Omega _ {A/B} ^ {1} \rightarrow M $ such that $ \overline \partial \; \circ d = \partial $. The correspondence $ \partial \rightarrow \overline \partial \; $ defines an isomorphism of $ A $- modules:
$$ \mathop{\rm Der} _ {B} ( A , M) \simeq \mathop{\rm Hom} _ {A} ( \Omega _ {A/B} ^ {1} , M). $$
In particular, the module of derivations of a ring $ A $ into itself is isomorphic to the dual $ A $- module to the module $ \Omega _ {A/B} ^ {1} $.
If $ A \otimes _ {B} A $ is regarded as an $ A $- algebra with respect to the homomorphism
$$ A \rightarrow A \otimes _ {B} A \ ( a \rightarrow a \otimes 1 ) $$
and $ I $ is the ideal generated by the elements of the type
$$ a \otimes 1 - 1 \otimes a , $$
then the $ A $- module $ \Omega _ {A/B} ^ {1} $ is isomorphic to the $ A $- module $ I / I ^ {2} $.
The module $ \Omega ^ {1} $ of derivations has the following properties:
1) If $ S $ is a multiplicatively closed set in $ A $ and $ T = S \cap B $, then there is a canonical localization isomorphism:
$$ ( \Omega _ {A/B} ^ {1} ) _ {S} \simeq \Omega _ {A _ {S} / B _ {T} } ^ {1} . $$
2) If $ \phi : A \rightarrow A _ {1} $ is a homomorphism of $ B $- algebras, then there is a canonical exact sequence of $ A _ {1} $- modules:
$$ \Omega _ {A/B} ^ {1} \otimes _ { A } A _ {1} \mathop \rightarrow \limits ^ \alpha \Omega _ {A _ {1} / B } ^ {1} \rightarrow \Omega _ {A _ {1} / A } \rightarrow 0 . $$
3) If $ I $ is an ideal of the ring $ A $ and $ A _ {1} = A/I $, then there is an exact canonical sequence of $ A _ {1} $- modules:
$$ I / I ^ {2} \rightarrow ^ { {d _ 1} } \Omega _ {A/B} ^ {1} \otimes _ { A } A _ {1} \rightarrow \ \Omega _ {A _ {1} / B } ^ {1} \rightarrow 0 , $$
where the homomorphism $ d _ {1} $ is induced by the derivation $ d: A \rightarrow \Omega _ {A/B} ^ {1} $.
4) A field $ K $ is a separable extension of a field $ k $ of finite transcendence degree $ n $ if and only if there is a $ K $- space isomorphism $ \Omega _ {K/k} ^ {1} \simeq K ^ {n} $.
5) If $ A = B [ T _ {1} \dots T _ {n} ] $ is an algebra of polynomials, then $ \Omega _ {A/B} ^ {1} $ is a free $ A $- module with as basis $ dT _ {1} \dots dT _ {n} $.
6) An algebra $ A $ of finite type over a perfect field $ k $ is a regular ring if and only if the $ A $- module $ \Omega _ {A/k} ^ {1} $ is projective.
7) Concerning 2) above, the $ A $- algebra $ A _ {1} $ of finite type is smooth over $ A $ if and only if the homomorphism $ \alpha $ is injective while the module $ \Omega _ {A _ {1} / A } ^ {1} $ of derivations is projective and its rank is equal to the relative dimension of $ A _ {1} $ over $ A $.
The $ i $- th exterior power $ \wedge ^ {i} \Omega _ {A/B} ^ {1} $ of the module $ \Omega _ {A/B} ^ {1} $ of derivations is said to be the module of (differential) $ i $- forms of the $ B $- algebra $ A $ and is denoted by $ \Omega _ {A/B} ^ {i} $.
By virtue of 1) it is possible to define, for any morphism of schemes $ X \rightarrow Y $, the sheaf of relative (or Kähler) derivations $ \Omega _ {X/Y} ^ {1} $ and its exterior powers $ \Omega _ {X/Y} ^ {i} $.
References
[1] | I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001 |
[2] | A. Grothendieck (ed.) et al. (ed.) , Revêtements étales et groupe fondamental. SGA 1 , Lect. notes in math. , 224 , Springer (1971) MR0354651 Zbl 1039.14001 |
[3] | A. Grothendieck, "Eléments de géométrie algébrique IV. Etude locale des schémes et des morphismes de schémes" Publ. Math. IHES , 20 (1964) MR0173675 |
[4] | E. Kähler, "Algebra und Differentialrechnung" , Deutsch. Verlag Wissenschaft. (1958) MR0094593 Zbl 0079.05701 |
Comments
References
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001 |
Derivations, module of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Derivations,_module_of&oldid=46632