|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | d0308501.png |
| + | $#A+1 = 31 n = 0 |
| + | $#C+1 = 31 : ~/encyclopedia/old_files/data/D030/D.0300850 Degenerate parabolic equation |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| A partial differential equation | | A partial differential equation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308501.png" /></td> </tr></table>
| + | $$ |
| + | F ( t, x, Du) = 0, |
| + | $$ |
| + | |
| + | where the function $ F( t, x, q) $ |
| + | has the following property: For some even natural number $ p $, |
| + | all roots $ \lambda $ |
| + | of the polynomial |
| + | |
| + | $$ |
| + | \sum _ {\alpha : \ |
| + | p \alpha _ {0} + \alpha _ {1} + \dots + \alpha _ {n} = m } |
| + | |
| + | \frac{\partial F ( t, x, Du) }{\partial q _ \alpha } |
| | | |
− | where the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308502.png" /> has the following property: For some even natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308503.png" />, all roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308504.png" /> of the polynomial
| + | \lambda ^ {\alpha _ {0} } ( i \xi ) ^ {\alpha ^ \prime } |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308505.png" /></td> </tr></table>
| + | have non-positive real parts for all real $ \xi $ |
| + | and, for certain $ \xi \neq 0 $, |
| + | $ t $, |
| + | $ x $, |
| + | and $ Du $, |
| + | $ \mathop{\rm Re} \lambda = 0 $ |
| + | for some root $ \lambda $, |
| + | or for certain $ t $, |
| + | $ x $ |
| + | and $ Du $ |
| + | the leading coefficient at $ \lambda ^ {m/p} $ |
| + | vanishes. Here $ t $ |
| + | is an independent variable which is often interpreted as time; $ x $ |
| + | is an $ n $- |
| + | dimensional vector $ ( x _ {1} \dots x _ {n} ) $; |
| + | $ u ( t, x) $ |
| + | is the unknown function; $ \alpha $ |
| + | is a multi-index $ ( \alpha _ {0} \dots \alpha _ {n} ) $; |
| + | $ Du $ |
| + | is the vector with components |
| | | |
− | have non-positive real parts for all real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308506.png" /> and, for certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308507.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308508.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308509.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085011.png" /> for some root <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085012.png" />, or for certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085015.png" /> the leading coefficient at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085016.png" /> vanishes. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085017.png" /> is an independent variable which is often interpreted as time; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085018.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085019.png" />-dimensional vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085020.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085021.png" /> is the unknown function; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085022.png" /> is a multi-index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085023.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085024.png" /> is the vector with components
| + | $$ |
| + | D ^ \alpha u = \ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085025.png" /></td> </tr></table>
| + | \frac{\partial ^ {| \alpha | } u }{\partial t ^ {\alpha _ {0} } |
| + | \partial x _ {1} ^ {\alpha _ {1} } \dots |
| + | \partial x _ {n} ^ {\alpha _ {n} } } |
| + | ,\ \ |
| + | p \alpha _ {0} + |
| + | \sum _ {i= 1 } ^ { n } \alpha _ {i} \leq m , |
| + | $$ |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085026.png" /> is a vector with components <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085028.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085029.png" />-dimensional vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085030.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085031.png" />. See also [[Degenerate partial differential equation|Degenerate partial differential equation]], and the references given there.
| + | $ q $ |
| + | is a vector with components $ q _ \alpha $, |
| + | $ \xi $ |
| + | is an $ n $- |
| + | dimensional vector $ ( \xi _ {1} \dots \xi _ {n} ) $, |
| + | and $ ( i \xi ) ^ {\alpha ^ \prime } = ( i \xi _ {1} ) ^ {\alpha _ {1} } \dots ( i \xi _ {n} ) ^ {\alpha _ {n} } $. |
| + | See also [[Degenerate partial differential equation|Degenerate partial differential equation]], and the references given there. |
A partial differential equation
$$
F ( t, x, Du) = 0,
$$
where the function $ F( t, x, q) $
has the following property: For some even natural number $ p $,
all roots $ \lambda $
of the polynomial
$$
\sum _ {\alpha : \
p \alpha _ {0} + \alpha _ {1} + \dots + \alpha _ {n} = m }
\frac{\partial F ( t, x, Du) }{\partial q _ \alpha }
\lambda ^ {\alpha _ {0} } ( i \xi ) ^ {\alpha ^ \prime }
$$
have non-positive real parts for all real $ \xi $
and, for certain $ \xi \neq 0 $,
$ t $,
$ x $,
and $ Du $,
$ \mathop{\rm Re} \lambda = 0 $
for some root $ \lambda $,
or for certain $ t $,
$ x $
and $ Du $
the leading coefficient at $ \lambda ^ {m/p} $
vanishes. Here $ t $
is an independent variable which is often interpreted as time; $ x $
is an $ n $-
dimensional vector $ ( x _ {1} \dots x _ {n} ) $;
$ u ( t, x) $
is the unknown function; $ \alpha $
is a multi-index $ ( \alpha _ {0} \dots \alpha _ {n} ) $;
$ Du $
is the vector with components
$$
D ^ \alpha u = \
\frac{\partial ^ {| \alpha | } u }{\partial t ^ {\alpha _ {0} }
\partial x _ {1} ^ {\alpha _ {1} } \dots
\partial x _ {n} ^ {\alpha _ {n} } }
,\ \
p \alpha _ {0} +
\sum _ {i= 1 } ^ { n } \alpha _ {i} \leq m ,
$$
$ q $
is a vector with components $ q _ \alpha $,
$ \xi $
is an $ n $-
dimensional vector $ ( \xi _ {1} \dots \xi _ {n} ) $,
and $ ( i \xi ) ^ {\alpha ^ \prime } = ( i \xi _ {1} ) ^ {\alpha _ {1} } \dots ( i \xi _ {n} ) ^ {\alpha _ {n} } $.
See also Degenerate partial differential equation, and the references given there.