Namespaces
Variants
Actions

Difference between revisions of "Degenerate kernels, method of"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A method to construct an approximating equation for approximate (and numerical) solutions of certain kinds of linear and non-linear integral equations. The main type of integral equations suitable for solving by this method are linear one-dimensional integral Fredholm equations of the second kind. The method as applied to such equations consists of an approximation which replaces the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030830/d0308301.png" /> of the integral equation
+
<!--
 +
d0308301.png
 +
$#A+1 = 6 n = 0
 +
$#C+1 = 6 : ~/encyclopedia/old_files/data/D030/D.0300830 Degenerate kernels, method of
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030830/d0308302.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A method to construct an approximating equation for approximate (and numerical) solutions of certain kinds of linear and non-linear integral equations. The main type of integral equations suitable for solving by this method are linear one-dimensional integral Fredholm equations of the second kind. The method as applied to such equations consists of an approximation which replaces the kernel  $  K ( x, s) $
 +
of the integral equation
 +
 
 +
$$ \tag{1 }
 +
\lambda \phi ( x) +
 +
\int\limits _ { a } ^ { b }
 +
K ( x, s) \phi ( s)  ds  = f ( x)
 +
$$
  
 
by a degenerate kernel of the type
 
by a degenerate kernel of the type
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030830/d0308303.png" /></td> </tr></table>
+
$$
 +
K _ {N} ( x, s)  = \
 +
\sum _ {n = 1 } ^ { N }
 +
a _ {n} ( x) b _ {n} ( s),
 +
$$
  
 
followed by the solution of the Fredholm [[Degenerate integral equation|degenerate integral equation]]
 
followed by the solution of the Fredholm [[Degenerate integral equation|degenerate integral equation]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030830/d0308304.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\lambda \widetilde \phi  ( x) +
 +
\int\limits _ { a } ^ { b }
 +
K _ {N} ( x, s) \widetilde \phi  ( s)  ds  = f ( x).
 +
$$
  
Solving (2) is reduced to solving a system of linear algebraic equations. The degenerate kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030830/d0308305.png" /> may be found from the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030830/d0308306.png" /> in several ways, e.g. by expanding the kernel into a Taylor series or a Fourier series (for other methods see [[Bateman method|Bateman method]]; [[Strip method (integral equations)|Strip method (integral equations)]]).
+
Solving (2) is reduced to solving a system of linear algebraic equations. The degenerate kernel $  K _ {N} ( x, s) $
 +
may be found from the kernel $  K ( x, s ) $
 +
in several ways, e.g. by expanding the kernel into a Taylor series or a Fourier series (for other methods see [[Bateman method|Bateman method]]; [[Strip method (integral equations)|Strip method (integral equations)]]).
  
 
The method of degenerate kernels may be applied to systems of integral equations of the type (1), to multi-dimensional equations with relatively simple domains of integration and to certain non-linear equations of Hammerstein type (cf. [[Hammerstein equation|Hammerstein equation]]).
 
The method of degenerate kernels may be applied to systems of integral equations of the type (1), to multi-dimensional equations with relatively simple domains of integration and to certain non-linear equations of Hammerstein type (cf. [[Hammerstein equation|Hammerstein equation]]).
Line 17: Line 44:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.V. Kantorovich,  V.I. Krylov,  "Approximate methods of higher analysis" , Noordhoff  (1958)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.V. Kantorovich,  V.I. Krylov,  "Approximate methods of higher analysis" , Noordhoff  (1958)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C.T.H. Baker,  "The numerical treatment of integral equations" , Clarendon Press  (1977)  pp. Chapt. 4</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K.E. Atkinson,  "A survey of numerical methods for the solution of Fredholm integral equations of the second kind" , SIAM  (1976)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.C. Gohberg,  S. Goldberg,  "Basic operator theory" , Birkhäuser  (1981)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  B.L. Moiseiwitsch,  "Integral equations" , Longman  (1977)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C.T.H. Baker,  "The numerical treatment of integral equations" , Clarendon Press  (1977)  pp. Chapt. 4</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K.E. Atkinson,  "A survey of numerical methods for the solution of Fredholm integral equations of the second kind" , SIAM  (1976)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.C. Gohberg,  S. Goldberg,  "Basic operator theory" , Birkhäuser  (1981)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  B.L. Moiseiwitsch,  "Integral equations" , Longman  (1977)</TD></TR></table>

Latest revision as of 17:32, 5 June 2020


A method to construct an approximating equation for approximate (and numerical) solutions of certain kinds of linear and non-linear integral equations. The main type of integral equations suitable for solving by this method are linear one-dimensional integral Fredholm equations of the second kind. The method as applied to such equations consists of an approximation which replaces the kernel $ K ( x, s) $ of the integral equation

$$ \tag{1 } \lambda \phi ( x) + \int\limits _ { a } ^ { b } K ( x, s) \phi ( s) ds = f ( x) $$

by a degenerate kernel of the type

$$ K _ {N} ( x, s) = \ \sum _ {n = 1 } ^ { N } a _ {n} ( x) b _ {n} ( s), $$

followed by the solution of the Fredholm degenerate integral equation

$$ \tag{2 } \lambda \widetilde \phi ( x) + \int\limits _ { a } ^ { b } K _ {N} ( x, s) \widetilde \phi ( s) ds = f ( x). $$

Solving (2) is reduced to solving a system of linear algebraic equations. The degenerate kernel $ K _ {N} ( x, s) $ may be found from the kernel $ K ( x, s ) $ in several ways, e.g. by expanding the kernel into a Taylor series or a Fourier series (for other methods see Bateman method; Strip method (integral equations)).

The method of degenerate kernels may be applied to systems of integral equations of the type (1), to multi-dimensional equations with relatively simple domains of integration and to certain non-linear equations of Hammerstein type (cf. Hammerstein equation).

References

[1] L.V. Kantorovich, V.I. Krylov, "Approximate methods of higher analysis" , Noordhoff (1958) (Translated from Russian)

Comments

References

[a1] C.T.H. Baker, "The numerical treatment of integral equations" , Clarendon Press (1977) pp. Chapt. 4
[a2] K.E. Atkinson, "A survey of numerical methods for the solution of Fredholm integral equations of the second kind" , SIAM (1976)
[a3] I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1981)
[a4] B.L. Moiseiwitsch, "Integral equations" , Longman (1977)
How to Cite This Entry:
Degenerate kernels, method of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Degenerate_kernels,_method_of&oldid=46613
This article was adapted from an original article by A.B. Bakushinskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article