Difference between revisions of "Degenerate equilibrium position"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | d0307701.png | ||
+ | $#A+1 = 7 n = 0 | ||
+ | $#C+1 = 7 : ~/encyclopedia/old_files/data/D030/D.0300770 Degenerate equilibrium position | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | A point | + | {{TEX|auto}} |
+ | {{TEX|done}} | ||
+ | |||
+ | ''of a system of ordinary differential equations $ \dot{x} = f( x) $'' | ||
+ | |||
+ | A point $ x _ {0} $ | ||
+ | for which $ f ( x _ {0} ) = 0 $ | ||
+ | and for which the matrix $ ( \partial f / \partial x) ( x _ {0} ) $ | ||
+ | has zero eigen values. The most extensively investigated degenerate equilibrium positions are those of two-dimensional systems, for which several methods for studying the behaviour of trajectories in a neighbourhood of this position are available; these include the methods of I. Bendixson [[#References|[1]]], [[#References|[2]]], [[#References|[4]]] and of M. Frommer [[#References|[3]]], [[#References|[4]]]. Geometric methods of investigation have been recommended in spaces of more than two dimensions; these consist, in essence, in isolating the main terms at the right-hand sides of the equations and demonstrating that the behaviour of the trajectory remains unchanged on passing from the abbreviated to the complete equation [[#References|[5]]]. If the mapping $ f $ | ||
+ | is sufficiently often differentiable or analytic, the degree of degeneracy of the equilibrium position may be considered equal to the number of non-degenerate equilibrium positions into which the given degenerate equilibrium position may be subdivided as a result of a change in $ f $ | ||
+ | which is small in the sense of the $ C ^ {r} $- | ||
+ | topology. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I. Bendixson, "Sur les courbes définies par des équations différentielles" ''Acta Math.'' , '''24''' (1901) pp. 1–88</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Frommer, "Die Integralkurven einer gewöhnlichen Differentialgleichung erster Ordnung in der Umgebung rationaler Unbestimmtheitsstellen" ''Math. Ann.'' , '''99''' (1928) pp. 222–272</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.V. Nemytskii, V.V. Stepanov, "Qualitative theory of differential equations" , Princeton Univ. Press (1960) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A.A. Bryuno, "Stepwise asymptotic solutions of non-linear systems" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''29''' (1965) pp. 329–364 (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I. Bendixson, "Sur les courbes définies par des équations différentielles" ''Acta Math.'' , '''24''' (1901) pp. 1–88</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Frommer, "Die Integralkurven einer gewöhnlichen Differentialgleichung erster Ordnung in der Umgebung rationaler Unbestimmtheitsstellen" ''Math. Ann.'' , '''99''' (1928) pp. 222–272</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.V. Nemytskii, V.V. Stepanov, "Qualitative theory of differential equations" , Princeton Univ. Press (1960) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A.A. Bryuno, "Stepwise asymptotic solutions of non-linear systems" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''29''' (1965) pp. 329–364 (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 17:32, 5 June 2020
of a system of ordinary differential equations $ \dot{x} = f( x) $
A point $ x _ {0} $ for which $ f ( x _ {0} ) = 0 $ and for which the matrix $ ( \partial f / \partial x) ( x _ {0} ) $ has zero eigen values. The most extensively investigated degenerate equilibrium positions are those of two-dimensional systems, for which several methods for studying the behaviour of trajectories in a neighbourhood of this position are available; these include the methods of I. Bendixson [1], [2], [4] and of M. Frommer [3], [4]. Geometric methods of investigation have been recommended in spaces of more than two dimensions; these consist, in essence, in isolating the main terms at the right-hand sides of the equations and demonstrating that the behaviour of the trajectory remains unchanged on passing from the abbreviated to the complete equation [5]. If the mapping $ f $ is sufficiently often differentiable or analytic, the degree of degeneracy of the equilibrium position may be considered equal to the number of non-degenerate equilibrium positions into which the given degenerate equilibrium position may be subdivided as a result of a change in $ f $ which is small in the sense of the $ C ^ {r} $- topology.
References
[1] | I. Bendixson, "Sur les courbes définies par des équations différentielles" Acta Math. , 24 (1901) pp. 1–88 |
[2] | A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian) |
[3] | M. Frommer, "Die Integralkurven einer gewöhnlichen Differentialgleichung erster Ordnung in der Umgebung rationaler Unbestimmtheitsstellen" Math. Ann. , 99 (1928) pp. 222–272 |
[4] | V.V. Nemytskii, V.V. Stepanov, "Qualitative theory of differential equations" , Princeton Univ. Press (1960) (Translated from Russian) |
[5] | A.A. Bryuno, "Stepwise asymptotic solutions of non-linear systems" Izv. Akad. Nauk SSSR Ser. Mat. , 29 (1965) pp. 329–364 (In Russian) |
Comments
See also Frommer method for the study of the behaviour of trajectories in a neighbourhood of an equilibrium position.
References
[a1] | M.W. Hirsch, S. Smale, "Differential equations, dynamical systems, and linear algebra" , Acad. Press (1974) |
[a2] | J.K. Hale, "Ordinary differential equations" , Wiley (1980) |
Degenerate equilibrium position. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Degenerate_equilibrium_position&oldid=46609