Namespaces
Variants
Actions

Difference between revisions of "Deficiency subspace"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
d0306301.png
 +
$#A+1 = 39 n = 0
 +
$#C+1 = 39 : ~/encyclopedia/old_files/data/D030/D.0300630 Deficiency subspace,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''defect subspace, defective subspace, of an operator''
 
''defect subspace, defective subspace, of an operator''
  
The orthogonal complement <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d0306301.png" /> of the range of values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d0306302.png" /> of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d0306303.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d0306304.png" /> is a linear operator defined on a linear manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d0306305.png" /> of a Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d0306306.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d0306307.png" /> is a regular value (regular point) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d0306308.png" />. Here, a regular value of an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d0306309.png" /> is understood to be a value of the parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063010.png" /> for which the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063011.png" /> has a unique solution for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063012.png" /> while the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063013.png" /> is bounded, i.e. the [[Resolvent|resolvent]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063014.png" /> is bounded. As <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063015.png" /> changes, the deficiency subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063016.png" /> changes as well, but its dimension remains the same for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063017.png" /> belonging to a connected component of the open set of all regular values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063018.png" />.
+
The orthogonal complement $  D _  \lambda  $
 +
of the range of values $  T _  \lambda  = \{ {y = ( A - \lambda I ) x } : {x \in D _ {A} } \} $
 +
of the operator $  A _  \lambda  = A - \lambda I $,  
 +
where $  A $
 +
is a linear operator defined on a linear manifold $  D _ {A} $
 +
of a Hilbert space $  H $,  
 +
while $  \lambda $
 +
is a regular value (regular point) of $  A $.  
 +
Here, a regular value of an operator $  A $
 +
is understood to be a value of the parameter $  \lambda $
 +
for which the equation $  ( A - \lambda I ) x = y $
 +
has a unique solution for any $  y $
 +
while the operator $  ( A - \lambda I )  ^ {-} 1 $
 +
is bounded, i.e. the [[Resolvent|resolvent]] of $  A $
 +
is bounded. As $  \lambda $
 +
changes, the deficiency subspace $  D _  \lambda  $
 +
changes as well, but its dimension remains the same for all $  \lambda $
 +
belonging to a connected component of the open set of all regular values of $  A $.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063019.png" /> is a symmetric operator with a dense domain of definition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063020.png" />, its connected components of regular values will be the upper and the lower half-plane. In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063021.png" />, while the deficiency numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063023.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063024.png" /> is the adjoint operator, are called the (positive and negative) deficiency indices of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063025.png" />. In addition,
+
If $  A $
 +
is a symmetric operator with a dense domain of definition $  D _ {A} $,  
 +
its connected components of regular values will be the upper and the lower half-plane. In this case $  D _  \lambda  = \{ {x \in D _ {A  ^ {*}  } } : {A  ^ {*} x = \overline \lambda \; x } \} $,  
 +
while the deficiency numbers $  n _ {+} = \mathop{\rm dim}  D _ {i} $
 +
and $  n _ {-} = \mathop{\rm dim}  D _ {-} i $,  
 +
where $  A  ^ {*} $
 +
is the adjoint operator, are called the (positive and negative) deficiency indices of the operator $  A $.  
 +
In addition,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063026.png" /></td> </tr></table>
+
$$
 +
D _ {A  ^ {*}  }  = D _ {A} \oplus D _ {i} \oplus D _ {-} i ,
 +
$$
  
i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063027.png" /> is the direct sum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063030.png" />. Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063031.png" />, the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063032.png" /> is self-adjoint; otherwise the deficiency subspace of a symmetric operator characterizes the extent of its deviation from a self-adjoint operator.
+
i.e. $  D _ {A  ^ {*}  } $
 +
is the direct sum of $  D _ {A} $,  
 +
$  D _ {i} $
 +
and $  D _ {-} i $.  
 +
Thus, if $  n _ {+} = n _ {-} = 0 $,  
 +
the operator $  A $
 +
is self-adjoint; otherwise the deficiency subspace of a symmetric operator characterizes the extent of its deviation from a self-adjoint operator.
  
 
Deficiency subspaces play an important role in constructing the extensions of a symmetric operator to a maximal operator or to a self-adjoint (hyper-maximal) operator.
 
Deficiency subspaces play an important role in constructing the extensions of a symmetric operator to a maximal operator or to a self-adjoint (hyper-maximal) operator.
Line 13: Line 57:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.A. Lyusternik,  V.I. Sobolev,  "Elements of functional analysis" , Hindushtan Publ. Comp.  (1974)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.I. Akhiezer,  I.M. Glazman,  "Theory of linear operators in a Hilbert space" , '''1–2''' , Pitman  (1981)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N. Dunford,  J.T. Schwartz,  "Linear operators" , '''1–2''' , Interscience  (1958–1963)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  F. Riesz,  B. Szökefalvi-Nagy,  "Functional analysis" , F. Ungar  (1955)  (Translated from French)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.A. Lyusternik,  V.I. Sobolev,  "Elements of functional analysis" , Hindushtan Publ. Comp.  (1974)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.I. Akhiezer,  I.M. Glazman,  "Theory of linear operators in a Hilbert space" , '''1–2''' , Pitman  (1981)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N. Dunford,  J.T. Schwartz,  "Linear operators" , '''1–2''' , Interscience  (1958–1963)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  F. Riesz,  B. Szökefalvi-Nagy,  "Functional analysis" , F. Ungar  (1955)  (Translated from French)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The definition of a regular value of an operator as given above is not quite correct and should read as follows. The value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063033.png" /> is a regular value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063034.png" /> if there exists a positive number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063035.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063036.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063037.png" />. In that case the kernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063038.png" /> consists of the zero vector only and the image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030630/d03063039.png" /> is closed (but not necessarily equal to the whole space).
+
The definition of a regular value of an operator as given above is not quite correct and should read as follows. The value $  \lambda $
 +
is a regular value of $  A $
 +
if there exists a positive number $  k = k ( \lambda ) > 0 $
 +
such that $  \| ( A - \lambda I ) x \| \geq  k  \| x \| $
 +
for all $  x \in D _ {A} $.  
 +
In that case the kernel of $  A - \lambda I $
 +
consists of the zero vector only and the image of $  A - \lambda I $
 +
is closed (but not necessarily equal to the whole space).

Revision as of 17:32, 5 June 2020


defect subspace, defective subspace, of an operator

The orthogonal complement $ D _ \lambda $ of the range of values $ T _ \lambda = \{ {y = ( A - \lambda I ) x } : {x \in D _ {A} } \} $ of the operator $ A _ \lambda = A - \lambda I $, where $ A $ is a linear operator defined on a linear manifold $ D _ {A} $ of a Hilbert space $ H $, while $ \lambda $ is a regular value (regular point) of $ A $. Here, a regular value of an operator $ A $ is understood to be a value of the parameter $ \lambda $ for which the equation $ ( A - \lambda I ) x = y $ has a unique solution for any $ y $ while the operator $ ( A - \lambda I ) ^ {-} 1 $ is bounded, i.e. the resolvent of $ A $ is bounded. As $ \lambda $ changes, the deficiency subspace $ D _ \lambda $ changes as well, but its dimension remains the same for all $ \lambda $ belonging to a connected component of the open set of all regular values of $ A $.

If $ A $ is a symmetric operator with a dense domain of definition $ D _ {A} $, its connected components of regular values will be the upper and the lower half-plane. In this case $ D _ \lambda = \{ {x \in D _ {A ^ {*} } } : {A ^ {*} x = \overline \lambda \; x } \} $, while the deficiency numbers $ n _ {+} = \mathop{\rm dim} D _ {i} $ and $ n _ {-} = \mathop{\rm dim} D _ {-} i $, where $ A ^ {*} $ is the adjoint operator, are called the (positive and negative) deficiency indices of the operator $ A $. In addition,

$$ D _ {A ^ {*} } = D _ {A} \oplus D _ {i} \oplus D _ {-} i , $$

i.e. $ D _ {A ^ {*} } $ is the direct sum of $ D _ {A} $, $ D _ {i} $ and $ D _ {-} i $. Thus, if $ n _ {+} = n _ {-} = 0 $, the operator $ A $ is self-adjoint; otherwise the deficiency subspace of a symmetric operator characterizes the extent of its deviation from a self-adjoint operator.

Deficiency subspaces play an important role in constructing the extensions of a symmetric operator to a maximal operator or to a self-adjoint (hyper-maximal) operator.

References

[1] L.A. Lyusternik, V.I. Sobolev, "Elements of functional analysis" , Hindushtan Publ. Comp. (1974) (Translated from Russian)
[2] N.I. Akhiezer, I.M. Glazman, "Theory of linear operators in a Hilbert space" , 1–2 , Pitman (1981) (Translated from Russian)
[3] N. Dunford, J.T. Schwartz, "Linear operators" , 1–2 , Interscience (1958–1963)
[4] F. Riesz, B. Szökefalvi-Nagy, "Functional analysis" , F. Ungar (1955) (Translated from French)

Comments

The definition of a regular value of an operator as given above is not quite correct and should read as follows. The value $ \lambda $ is a regular value of $ A $ if there exists a positive number $ k = k ( \lambda ) > 0 $ such that $ \| ( A - \lambda I ) x \| \geq k \| x \| $ for all $ x \in D _ {A} $. In that case the kernel of $ A - \lambda I $ consists of the zero vector only and the image of $ A - \lambda I $ is closed (but not necessarily equal to the whole space).

How to Cite This Entry:
Deficiency subspace. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Deficiency_subspace&oldid=46603
This article was adapted from an original article by V.I. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article