Namespaces
Variants
Actions

Difference between revisions of "Decimal fraction"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
d0304301.png
 +
$#A+1 = 26 n = 0
 +
$#C+1 = 26 : ~/encyclopedia/old_files/data/D030/D.0300430 Decimal fraction
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
An arithmetical [[Fraction|fraction]] with an integral power of 10 as its denominator. The following notation has been accepted for a decimal fraction:
 
An arithmetical [[Fraction|fraction]] with an integral power of 10 as its denominator. The following notation has been accepted for a decimal fraction:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d0304301.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
a _ {k} \dots a _ {0} . b _ {1} \dots b _ {l} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d0304302.png" /> are integers and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d0304303.png" /> then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d0304304.png" /> is also non-zero.
+
where $  0 \leq  a _ {i} , b _ {j} < 10 $
 +
are integers and if $  k \neq 0 $
 +
then $  a _ {k} $
 +
is also non-zero.
  
 
Formula (1) expresses the number
 
Formula (1) expresses the number
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d0304305.png" /></td> </tr></table>
+
$$
 +
a _ {k} 10  ^ {k} + \dots + a _ {1} 10 +
 +
a _ {0} +
 +
\frac{b _ {1} }{10 }
 +
 
 +
+ \dots +
 +
\frac{b _ {l} }{10  ^ {l} }
 +
.
 +
$$
  
 
For example,
 
For example,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d0304306.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{3}{10}
 +
  = 0.3 ; \ 
 +
\frac{3524}{100}
 +
  = 35.24 ; \ \
 +
 
 +
\frac{15}{1000}
 +
  = 0.015 .
 +
$$
  
 
The digits to the right of the decimal point are known as the decimal digits. If a decimal fraction contains no integer part, i.e. its absolute value is smaller than one, a zero is placed to the left of the decimal point.
 
The digits to the right of the decimal point are known as the decimal digits. If a decimal fraction contains no integer part, i.e. its absolute value is smaller than one, a zero is placed to the left of the decimal point.
Line 17: Line 51:
 
An infinite decimal fraction is an infinite sequence of digits such as
 
An infinite decimal fraction is an infinite sequence of digits such as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d0304307.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
a _ {0} . b _ {1} b _ {2} \dots ,
 +
$$
 +
 
 +
where  $  a _ {0} $
 +
is an integer, while each one of the numbers  $  b _ {j} $,
 +
$  j = 1 , 2 \dots $
 +
assumes one of the values  $  0 \dots 9 $.  
 +
Any real number  $  \alpha $
 +
is the sum of such a series, i.e.
 +
 
 +
$$
 +
\alpha  = a _ {0} + \sum _ {k = 1 } ^  \infty 
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d0304308.png" /> is an integer, while each one of the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d0304309.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043010.png" /> assumes one of the values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043011.png" />. Any real number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043012.png" /> is the sum of such a series, i.e.
+
\frac{b _ {k} }{10  ^ {k} }
 +
.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043013.png" /></td> </tr></table>
+
The partial sums of the series (2) are finite decimal fractions  $  a _ {0} . b _ {1} \dots b _ {n} $,
 +
which are approximate values of the number  $  \alpha $
 +
smaller than  $  \alpha $;
 +
the numbers
  
The partial sums of the series (2) are finite decimal fractions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043014.png" />, which are approximate values of the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043015.png" /> smaller than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043016.png" />; the numbers
+
$$
 +
a _ {0} . b _ {1} \dots b _ {n} +
 +
\frac{1}{10  ^ {n} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043017.png" /></td> </tr></table>
+
$$
  
are the respective approximate values larger than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043018.png" />. If there exists integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043020.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043021.png" /> the equalities
+
are the respective approximate values larger than $  \alpha $.  
 +
If there exists integers $  n $
 +
and $  m $
 +
such that for all $  i > n $
 +
the equalities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043022.png" /></td> </tr></table>
+
$$
 +
b _ {i}  = b _ {i+} m ,
 +
$$
  
are valid, the infinite decimal fraction is said to be periodic. Any finite decimal fraction may be regarded as an infinite periodic fraction with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043023.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043024.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043025.png" /> is a [[Rational number|rational number]], the corresponding fraction (2) will be periodic. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030430/d03043026.png" /> is irrational, the fraction (2) cannot be periodic.
+
are valid, the infinite decimal fraction is said to be periodic. Any finite decimal fraction may be regarded as an infinite periodic fraction with $  b _ {i} = 0 $
 +
for $  i> n $.  
 +
If $  \alpha $
 +
is a [[Rational number|rational number]], the corresponding fraction (2) will be periodic. If $  \alpha $
 +
is irrational, the fraction (2) cannot be periodic.

Latest revision as of 17:32, 5 June 2020


An arithmetical fraction with an integral power of 10 as its denominator. The following notation has been accepted for a decimal fraction:

$$ \tag{1 } a _ {k} \dots a _ {0} . b _ {1} \dots b _ {l} , $$

where $ 0 \leq a _ {i} , b _ {j} < 10 $ are integers and if $ k \neq 0 $ then $ a _ {k} $ is also non-zero.

Formula (1) expresses the number

$$ a _ {k} 10 ^ {k} + \dots + a _ {1} 10 + a _ {0} + \frac{b _ {1} }{10 } + \dots + \frac{b _ {l} }{10 ^ {l} } . $$

For example,

$$ \frac{3}{10} = 0.3 ; \ \frac{3524}{100} = 35.24 ; \ \ \frac{15}{1000} = 0.015 . $$

The digits to the right of the decimal point are known as the decimal digits. If a decimal fraction contains no integer part, i.e. its absolute value is smaller than one, a zero is placed to the left of the decimal point.

An infinite decimal fraction is an infinite sequence of digits such as

$$ \tag{2 } a _ {0} . b _ {1} b _ {2} \dots , $$

where $ a _ {0} $ is an integer, while each one of the numbers $ b _ {j} $, $ j = 1 , 2 \dots $ assumes one of the values $ 0 \dots 9 $. Any real number $ \alpha $ is the sum of such a series, i.e.

$$ \alpha = a _ {0} + \sum _ {k = 1 } ^ \infty \frac{b _ {k} }{10 ^ {k} } . $$

The partial sums of the series (2) are finite decimal fractions $ a _ {0} . b _ {1} \dots b _ {n} $, which are approximate values of the number $ \alpha $ smaller than $ \alpha $; the numbers

$$ a _ {0} . b _ {1} \dots b _ {n} + \frac{1}{10 ^ {n} } $$

are the respective approximate values larger than $ \alpha $. If there exists integers $ n $ and $ m $ such that for all $ i > n $ the equalities

$$ b _ {i} = b _ {i+} m , $$

are valid, the infinite decimal fraction is said to be periodic. Any finite decimal fraction may be regarded as an infinite periodic fraction with $ b _ {i} = 0 $ for $ i> n $. If $ \alpha $ is a rational number, the corresponding fraction (2) will be periodic. If $ \alpha $ is irrational, the fraction (2) cannot be periodic.

How to Cite This Entry:
Decimal fraction. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Decimal_fraction&oldid=46595
This article was adapted from an original article by S.A. Stepanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article