Difference between revisions of "De la Vallée-Poussin summation method"
Ulf Rehmann (talk | contribs) m (moved De la Vallee-Poussin summation method to De la Vallée-Poussin summation method over redirect: accented title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | d0302801.png | ||
+ | $#A+1 = 8 n = 0 | ||
+ | $#C+1 = 8 : ~/encyclopedia/old_files/data/D030/D.0300280 de la Vall\Aeee\AAnPoussin summation method | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A method for summing series of numbers. It is denoted by the symbol $ ( VP) $. | |
+ | A series | ||
− | + | $$ | |
+ | \sum _ {k = 0 } ^ \infty a _ {k} $$ | ||
− | + | has a de la Vallée-Poussin sum $ S $ | |
+ | if the relation | ||
− | + | $$ | |
+ | \lim\limits _ {n \rightarrow \infty } | ||
+ | \left [ a _ {0} + | ||
− | + | \frac{n}{n + 1 } | |
+ | a _ {1} + | ||
+ | |||
+ | \frac{n ( n - 1) }{( n + 1) ( n + 2) } | ||
+ | |||
+ | a _ {2} + \right . \dots | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \dots \left . | ||
+ | + n! over {( n + 1) \dots 2n } a _ {n} \right ] = S | ||
+ | $$ | ||
+ | |||
+ | is valid. The method was proposed by Ch.J. de la Vallée-Poussin [[#References|[1]]]. For the Fourier series of a function $ f \in L [ 0, 2 \pi ] $ | ||
+ | the de la Vallée-Poussin averages (see also [[De la Vallée-Poussin singular integral|de la Vallée-Poussin singular integral]]) are of the form | ||
+ | |||
+ | $$ | ||
+ | V _ {n} ( f, x) = \ | ||
+ | \int\limits _ {- \pi } ^ \pi | ||
+ | f ( x + t) \tau _ {n} ( t) dt, | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | \tau _ {n} ( t) = \ | ||
+ | |||
+ | \frac{1}{2 \pi } | ||
+ | |||
+ | \frac{2 ^ {2n} ( n!) ^ {2} }{( 2n)! } | ||
+ | \ | ||
+ | \cos ^ {2n} { | ||
+ | \frac{t}{2} | ||
+ | } | ||
+ | $$ | ||
is the so-called de la Vallée-Poussin kernel. The de la Vallée-Poussin summation method is a regular summation method (cf. [[Regular summation methods|Regular summation methods]]). The method is stronger than all [[Cesàro summation methods|Cesàro summation methods]] (cf. [[Inclusion of summation methods|Inclusion of summation methods]]). In view of its weak approximative properties, the de la Vallée-Poussin summation method is practically never used in the theory of approximation of functions. | is the so-called de la Vallée-Poussin kernel. The de la Vallée-Poussin summation method is a regular summation method (cf. [[Regular summation methods|Regular summation methods]]). The method is stronger than all [[Cesàro summation methods|Cesàro summation methods]] (cf. [[Inclusion of summation methods|Inclusion of summation methods]]). In view of its weak approximative properties, the de la Vallée-Poussin summation method is practically never used in the theory of approximation of functions. |
Revision as of 17:32, 5 June 2020
A method for summing series of numbers. It is denoted by the symbol $ ( VP) $.
A series
$$ \sum _ {k = 0 } ^ \infty a _ {k} $$
has a de la Vallée-Poussin sum $ S $ if the relation
$$ \lim\limits _ {n \rightarrow \infty } \left [ a _ {0} + \frac{n}{n + 1 } a _ {1} + \frac{n ( n - 1) }{( n + 1) ( n + 2) } a _ {2} + \right . \dots $$
$$ \dots \left . + n! over {( n + 1) \dots 2n } a _ {n} \right ] = S $$
is valid. The method was proposed by Ch.J. de la Vallée-Poussin [1]. For the Fourier series of a function $ f \in L [ 0, 2 \pi ] $ the de la Vallée-Poussin averages (see also de la Vallée-Poussin singular integral) are of the form
$$ V _ {n} ( f, x) = \ \int\limits _ {- \pi } ^ \pi f ( x + t) \tau _ {n} ( t) dt, $$
where
$$ \tau _ {n} ( t) = \ \frac{1}{2 \pi } \frac{2 ^ {2n} ( n!) ^ {2} }{( 2n)! } \ \cos ^ {2n} { \frac{t}{2} } $$
is the so-called de la Vallée-Poussin kernel. The de la Vallée-Poussin summation method is a regular summation method (cf. Regular summation methods). The method is stronger than all Cesàro summation methods (cf. Inclusion of summation methods). In view of its weak approximative properties, the de la Vallée-Poussin summation method is practically never used in the theory of approximation of functions.
References
[1] | Ch.J. de la Vallée-Poussin, "Sur l'approximation des fonctions d'une variable reélle et de leurs dérivées par des polynômes et des suites limitées de Fourier" Bull. Acad. Belg. , 3 (1908) pp. 193–254 |
[2] | G.H. Hardy, "Divergent series" , Clarendon Press (1949) |
[3] | T. Gronwall, "Ueber einige Summationsmethoden und ihre Anwendung auf die Fouriersche Reihe" J. Reine Angew. Math. , 147 (1917) pp. 16–35 |
De la Vallée-Poussin summation method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=De_la_Vall%C3%A9e-Poussin_summation_method&oldid=46593