Difference between revisions of "De la Vallée-Poussin derivative"
Ulf Rehmann (talk | contribs) m (moved De la Vallee-Poussin derivative to De la Vallée-Poussin derivative over redirect: accented title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | d0302401.png | ||
+ | $#A+1 = 38 n = 0 | ||
+ | $#C+1 = 38 : ~/encyclopedia/old_files/data/D030/D.0300240 de la Vall\Aeee\AAnPoussin derivative, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''generalized symmetric derivative'' | ''generalized symmetric derivative'' | ||
− | A derivative defined by Ch.J. de la Vallée-Poussin [[#References|[1]]]. Let | + | A derivative defined by Ch.J. de la Vallée-Poussin [[#References|[1]]]. Let $ r $ |
+ | be an even number and let there exist a $ \delta > 0 $ | ||
+ | such that for all $ t $ | ||
+ | with $ | t | < \delta $, | ||
+ | |||
+ | $$ \tag{* } | ||
+ | { | ||
+ | \frac{1}{2} | ||
+ | } \{ f ( x _ {0} + t) + f ( x _ {0} - t) \} = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \beta _ {0} + | ||
+ | \frac{t ^ {2} \beta _ {2} }{2 } | ||
+ | + \dots + | ||
− | + | \frac{t ^ {r} \beta _ {r} }{r! } | |
+ | + \gamma ( t) t ^ {r} , | ||
+ | $$ | ||
− | where | + | where $ \beta _ {0} \dots \beta _ {r} $ |
+ | are constants, $ \gamma ( t) \rightarrow 0 $ | ||
+ | as $ t \rightarrow 0 $ | ||
+ | and $ \gamma ( 0) = 0 $. | ||
+ | The number $ \beta _ {r} = f _ {(} r) ( x _ {0} ) $ | ||
+ | is called the de la Vallée-Poussin derivative of order $ r $, | ||
+ | or the symmetric derivative of order $ r $, | ||
+ | of the function $ f $ | ||
+ | at the point $ x _ {0} $. | ||
− | The de la Vallée-Poussin derivatives of odd orders | + | The de la Vallée-Poussin derivatives of odd orders $ r $ |
+ | are defined in a similar manner, equation (*) being replaced by | ||
− | + | $$ | |
+ | { | ||
+ | \frac{1}{2} | ||
+ | } \{ f ( x _ {0} + t) - f ( x _ {0} - t) \} = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | t \beta _ {1} + | ||
+ | \frac{t ^ {3} \beta _ {3} }{ | ||
+ | 3! } | ||
+ | + \dots + | ||
+ | \frac{t ^ {r} \beta _ {r} }{r! } | ||
+ | + \gamma ( t) t ^ {r} . | ||
+ | $$ | ||
− | The de la Vallée-Poussin derivative | + | The de la Vallée-Poussin derivative $ f _ {(} 2) ( x _ {0} ) $ |
+ | is identical with Riemann's second derivative, often called the Schwarzian derivative. If $ f _ {(} r) ( x _ {0} ) $ | ||
+ | exists, $ f _ {(} r- 2) ( x _ {0} ) $, | ||
+ | $ r \geq 2 $, | ||
+ | also exist, but $ f _ {(} r- 1) ( x _ {0} ) $ | ||
+ | need not exist. If there exists a finite ordinary two-sided derivative $ f ^ { ( r) } ( x _ {0} ) $, | ||
+ | then $ f _ {(} r) ( x _ {0} ) = f ^ { ( r) } ( x _ {0} ) $. | ||
+ | For the function $ f( x) = { \mathop{\rm sgn} } x $, | ||
+ | for example, $ f _ {(} 2k) ( 0) = 0 $, | ||
+ | $ k = 1, 2 \dots $ | ||
+ | and the $ f _ {(} 2k+ 1) ( 0) $, | ||
+ | $ k = 0, 1 \dots $ | ||
+ | do not exist. If there exists a de la Vallée-Poussin derivative $ f _ {(} r) ( x _ {0} ) $, | ||
+ | the series $ S ^ { ( r) } ( f ) $ | ||
+ | obtained from the Fourier series of $ f $ | ||
+ | by term-by-term differentiation repeated $ r $ | ||
+ | times is summable at $ x _ {0} $ | ||
+ | to $ f _ {(} r) ( x _ {0} ) $ | ||
+ | by the method $ ( C, \alpha ) $ | ||
+ | for $ \alpha > r $, | ||
+ | [[#References|[2]]] (cf. [[Cesàro summation methods|Cesàro summation methods]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> Ch.J. de la Vallée-Poussin, "Sur l'approximation des fonctions d'une variable reélle et de leurs dériveés par des polynômes et des suites limiteés de Fourier" ''Bull. Acad. Belg.'' , '''3''' (1908) pp. 193–254</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988) pp. Chapt.11</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Ch.J. de la Vallée-Poussin, "Sur l'approximation des fonctions d'une variable reélle et de leurs dériveés par des polynômes et des suites limiteés de Fourier" ''Bull. Acad. Belg.'' , '''3''' (1908) pp. 193–254</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988) pp. Chapt.11</TD></TR></table> |
Latest revision as of 17:32, 5 June 2020
generalized symmetric derivative
A derivative defined by Ch.J. de la Vallée-Poussin [1]. Let $ r $ be an even number and let there exist a $ \delta > 0 $ such that for all $ t $ with $ | t | < \delta $,
$$ \tag{* } { \frac{1}{2} } \{ f ( x _ {0} + t) + f ( x _ {0} - t) \} = $$
$$ = \ \beta _ {0} + \frac{t ^ {2} \beta _ {2} }{2 } + \dots + \frac{t ^ {r} \beta _ {r} }{r! } + \gamma ( t) t ^ {r} , $$
where $ \beta _ {0} \dots \beta _ {r} $ are constants, $ \gamma ( t) \rightarrow 0 $ as $ t \rightarrow 0 $ and $ \gamma ( 0) = 0 $. The number $ \beta _ {r} = f _ {(} r) ( x _ {0} ) $ is called the de la Vallée-Poussin derivative of order $ r $, or the symmetric derivative of order $ r $, of the function $ f $ at the point $ x _ {0} $.
The de la Vallée-Poussin derivatives of odd orders $ r $ are defined in a similar manner, equation (*) being replaced by
$$ { \frac{1}{2} } \{ f ( x _ {0} + t) - f ( x _ {0} - t) \} = $$
$$ = \ t \beta _ {1} + \frac{t ^ {3} \beta _ {3} }{ 3! } + \dots + \frac{t ^ {r} \beta _ {r} }{r! } + \gamma ( t) t ^ {r} . $$
The de la Vallée-Poussin derivative $ f _ {(} 2) ( x _ {0} ) $ is identical with Riemann's second derivative, often called the Schwarzian derivative. If $ f _ {(} r) ( x _ {0} ) $ exists, $ f _ {(} r- 2) ( x _ {0} ) $, $ r \geq 2 $, also exist, but $ f _ {(} r- 1) ( x _ {0} ) $ need not exist. If there exists a finite ordinary two-sided derivative $ f ^ { ( r) } ( x _ {0} ) $, then $ f _ {(} r) ( x _ {0} ) = f ^ { ( r) } ( x _ {0} ) $. For the function $ f( x) = { \mathop{\rm sgn} } x $, for example, $ f _ {(} 2k) ( 0) = 0 $, $ k = 1, 2 \dots $ and the $ f _ {(} 2k+ 1) ( 0) $, $ k = 0, 1 \dots $ do not exist. If there exists a de la Vallée-Poussin derivative $ f _ {(} r) ( x _ {0} ) $, the series $ S ^ { ( r) } ( f ) $ obtained from the Fourier series of $ f $ by term-by-term differentiation repeated $ r $ times is summable at $ x _ {0} $ to $ f _ {(} r) ( x _ {0} ) $ by the method $ ( C, \alpha ) $ for $ \alpha > r $, [2] (cf. Cesàro summation methods).
References
[1] | Ch.J. de la Vallée-Poussin, "Sur l'approximation des fonctions d'une variable reélle et de leurs dériveés par des polynômes et des suites limiteés de Fourier" Bull. Acad. Belg. , 3 (1908) pp. 193–254 |
[2] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) pp. Chapt.11 |
De la Vallée-Poussin derivative. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=De_la_Vall%C3%A9e-Poussin_derivative&oldid=46590