Difference between revisions of "Darboux vector"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | d0302101.png | ||
+ | $#A+1 = 17 n = 0 | ||
+ | $#C+1 = 17 : ~/encyclopedia/old_files/data/D030/D.0300210 Darboux vector | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The vector $ \pmb\delta $ | |
+ | of the instantaneous axis of rotation around which the natural trihedral of a curve $ L $ | ||
+ | is rotating during the uniform movement of a point $ M $ | ||
+ | along the curve $ L $. | ||
+ | The Darboux vector lies in the rectifying plane of the curve $ L $ | ||
+ | and is expressed in terms of the principal normal $ \mathbf n $ | ||
+ | and the tangent $ \mathbf t $ | ||
+ | of $ L $ | ||
+ | by the formula | ||
− | + | $$ | |
+ | \pmb\delta = \sqrt {\tau ^ {2} + \sigma ^ {2} } | ||
+ | ( \mathbf t \cos \theta + \mathbf n \sin \theta ) , | ||
+ | $$ | ||
− | where | + | where $ \tau $ |
+ | and $ \sigma $ | ||
+ | are the curvature and the torsion of $ L $ | ||
+ | and $ \theta $ | ||
+ | is the angle between the Darboux vector and the tangent to $ L $. | ||
+ | The [[Frénet formulas|Frénet formulas]] may be written with the aid of the Darboux vector as follows: | ||
+ | |||
+ | $$ | ||
+ | \dot{\mathbf t} = [ \pmb\delta , \mathbf t ] ,\ \ | ||
+ | \dot{\mathbf n} = [ \pmb\delta , \mathbf n ] ,\ \ | ||
+ | \dot{\mathbf b} = [ \pmb\delta , \mathbf b ] , | ||
+ | $$ | ||
+ | |||
+ | where $ \mathbf b $ | ||
+ | is the [[Binormal|binormal]] of $ L $. | ||
G. Darboux [[#References|[1]]] was the first to point out the geometric significance of the Darboux vector for the natural trihedral of a space curve. | G. Darboux [[#References|[1]]] was the first to point out the geometric significance of the Darboux vector for the natural trihedral of a space curve. | ||
Line 13: | Line 46: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''1''' , Gauthier-Villars (1887) pp. 1–18</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.F. Kagan, "Foundations of the theory of surfaces in a tensor setting" , '''1''' , Moscow-Leningrad (1947) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''1''' , Gauthier-Villars (1887) pp. 1–18</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.F. Kagan, "Foundations of the theory of surfaces in a tensor setting" , '''1''' , Moscow-Leningrad (1947) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 17:32, 5 June 2020
The vector $ \pmb\delta $
of the instantaneous axis of rotation around which the natural trihedral of a curve $ L $
is rotating during the uniform movement of a point $ M $
along the curve $ L $.
The Darboux vector lies in the rectifying plane of the curve $ L $
and is expressed in terms of the principal normal $ \mathbf n $
and the tangent $ \mathbf t $
of $ L $
by the formula
$$ \pmb\delta = \sqrt {\tau ^ {2} + \sigma ^ {2} } ( \mathbf t \cos \theta + \mathbf n \sin \theta ) , $$
where $ \tau $ and $ \sigma $ are the curvature and the torsion of $ L $ and $ \theta $ is the angle between the Darboux vector and the tangent to $ L $. The Frénet formulas may be written with the aid of the Darboux vector as follows:
$$ \dot{\mathbf t} = [ \pmb\delta , \mathbf t ] ,\ \ \dot{\mathbf n} = [ \pmb\delta , \mathbf n ] ,\ \ \dot{\mathbf b} = [ \pmb\delta , \mathbf b ] , $$
where $ \mathbf b $ is the binormal of $ L $.
G. Darboux [1] was the first to point out the geometric significance of the Darboux vector for the natural trihedral of a space curve.
References
[1] | G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 1 , Gauthier-Villars (1887) pp. 1–18 |
[2] | V.F. Kagan, "Foundations of the theory of surfaces in a tensor setting" , 1 , Moscow-Leningrad (1947) (In Russian) |
Comments
The natural trihedral (a name used by S. Sternberg [a1]) is commonly called Frénet frame (also Frénet trihedron).
References
[a1] | S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964) |
[a2] | W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , Springer (1973) |
Darboux vector. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Darboux_vector&oldid=46584