Difference between revisions of "Crossed homomorphism"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0271401.png | ||
+ | $#A+1 = 32 n = 0 | ||
+ | $#C+1 = 32 : ~/encyclopedia/old_files/data/C027/C.0207140 Crossed homomorphism | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | ''of a group $ G $ | ||
+ | into a group $ \Gamma $ | ||
+ | with group of operators $ G $'' | ||
+ | A mapping $ \phi : G \rightarrow \Gamma $ | ||
+ | satisfying the condition $ \phi ( a b ) = \phi ( a) ( a \phi ( b) ) $. | ||
+ | If $ G $ | ||
+ | acts trivially on $ \Gamma $, | ||
+ | then crossed homomorphisms are just ordinary homomorphisms. Crossed homomorphisms are also called $ 1 $- | ||
+ | cocycles of $ G $ | ||
+ | with values in $ \Gamma $( | ||
+ | see [[Non-Abelian cohomology|Non-Abelian cohomology]]). Every element $ \gamma \in \Gamma $ | ||
+ | defines a crossed homomorphism $ \phi ( a) = \gamma ^ {-} 1 ( a \gamma ) $( | ||
+ | $ a \in G $), | ||
+ | called a principal crossed homomorphism, or cocycle cohomologous to $ e $. | ||
+ | A mapping $ \phi : G \rightarrow \Gamma $ | ||
+ | is a crossed homomorphism if and only if the mapping $ \rho $ | ||
+ | of $ G $ | ||
+ | into the holomorph of $ \Gamma $( | ||
+ | cf. [[Holomorph of a group|Holomorph of a group]]) given by $ \rho ( a) = ( \phi ( a) , \sigma ( a) ) $, | ||
+ | where $ \sigma : G \rightarrow \mathop{\rm Aut} \Gamma $ | ||
+ | is the homomorphism defining the $ G $ | ||
+ | action on $ \Gamma $, | ||
+ | is a homomorphism. For example, if $ \sigma $ | ||
+ | is a linear representation of $ G $ | ||
+ | in a vector space $ V $, | ||
+ | then any crossed homomorphism $ \phi : G \rightarrow V $ | ||
+ | defines a representation $ \rho $ | ||
+ | of $ G $ | ||
+ | by affine transformations of $ V $. | ||
+ | The set $ \phi ^ {-} 1 ( e) \subset G $ | ||
+ | is called the kernel of the crossed homomorphism $ \phi $; | ||
+ | it is always a subgroup of $ G $. | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Lang, "Rapport sur la cohomologie des groupes" , Benjamin (1966)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Lang, "Rapport sur la cohomologie des groupes" , Benjamin (1966)</TD></TR></table> |
Revision as of 17:31, 5 June 2020
of a group $ G $
into a group $ \Gamma $
with group of operators $ G $
A mapping $ \phi : G \rightarrow \Gamma $ satisfying the condition $ \phi ( a b ) = \phi ( a) ( a \phi ( b) ) $. If $ G $ acts trivially on $ \Gamma $, then crossed homomorphisms are just ordinary homomorphisms. Crossed homomorphisms are also called $ 1 $- cocycles of $ G $ with values in $ \Gamma $( see Non-Abelian cohomology). Every element $ \gamma \in \Gamma $ defines a crossed homomorphism $ \phi ( a) = \gamma ^ {-} 1 ( a \gamma ) $( $ a \in G $), called a principal crossed homomorphism, or cocycle cohomologous to $ e $. A mapping $ \phi : G \rightarrow \Gamma $ is a crossed homomorphism if and only if the mapping $ \rho $ of $ G $ into the holomorph of $ \Gamma $( cf. Holomorph of a group) given by $ \rho ( a) = ( \phi ( a) , \sigma ( a) ) $, where $ \sigma : G \rightarrow \mathop{\rm Aut} \Gamma $ is the homomorphism defining the $ G $ action on $ \Gamma $, is a homomorphism. For example, if $ \sigma $ is a linear representation of $ G $ in a vector space $ V $, then any crossed homomorphism $ \phi : G \rightarrow V $ defines a representation $ \rho $ of $ G $ by affine transformations of $ V $. The set $ \phi ^ {-} 1 ( e) \subset G $ is called the kernel of the crossed homomorphism $ \phi $; it is always a subgroup of $ G $.
Comments
References
[a1] | S. MacLane, "Homology" , Springer (1963) |
[a2] | S. Lang, "Rapport sur la cohomologie des groupes" , Benjamin (1966) |
Crossed homomorphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Crossed_homomorphism&oldid=46557