Namespaces
Variants
Actions

Difference between revisions of "Correlation ratio"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A characteristic of dependence between random variables. The correlation ratio of a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265801.png" /> relative to a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265802.png" /> is the expression
+
<!--
 +
c0265801.png
 +
$#A+1 = 26 n = 0
 +
$#C+1 = 26 : ~/encyclopedia/old_files/data/C026/C.0206580 Correlation ratio
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265803.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265804.png" /> is the variance of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265805.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265806.png" /> is the conditional variance of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265807.png" /> given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265808.png" />, which characterizes the spread of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265809.png" /> about its conditional mathematical expectation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658010.png" /> for a given value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658011.png" />. Invariably, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658012.png" />. The equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658013.png" /> corresponds to non-correlated random variables; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658014.png" /> if and only if there is an exact functional relationship between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658016.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658017.png" /> is linearly dependent on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658018.png" />, the correlation ratio coincides with the squared correlation coefficient. The correlation ratio is non-symmetric in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658020.png" />, and so, together with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658021.png" />, one considers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658022.png" /> (the correlation ratio of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658023.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658024.png" />, defined analogously). There is no simple relationship between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658026.png" />. See also [[Correlation (in statistics)|Correlation (in statistics)]].
+
A characteristic of dependence between random variables. The correlation ratio of a random variable 
 +
relative to a random variable    X
 +
is the expression
 +
 
 +
$$
 +
\eta _ {Y \mid  X }  ^ {2}  = \
 +
1 - {\mathsf E} \left [
 +
 
 +
\frac{ {\mathsf D} ( Y \mid  X) }{ {\mathsf D} Y }
 +
 
 +
\right ] ,
 +
$$
 +
 
 +
where   {\mathsf D} Y
 +
is the variance of   Y ,  
 +
  {\mathsf D} ( Y \mid  X)
 +
is the conditional variance of   Y
 +
given   X ,  
 +
which characterizes the spread of   Y
 +
about its conditional mathematical expectation   {\mathsf E} ( Y \mid  X)
 +
for a given value of   X .  
 +
Invariably, 0 \leq  \eta _ {Y \mid  X }  ^ {2} \leq  1 $.  
 +
The equality $  \eta _ {Y \mid  X }  ^ {2} = 0 $
 +
corresponds to non-correlated random variables; $  \eta _ {Y \mid  X }  ^ {2} = 1 $
 +
if and only if there is an exact functional relationship between   Y
 +
and   X ;  
 +
if   Y
 +
is linearly dependent on   X ,  
 +
the correlation ratio coincides with the squared correlation coefficient. The correlation ratio is non-symmetric in   X
 +
and   Y ,  
 +
and so, together with   \eta _ {Y \mid  X }  ^ {2} ,  
 +
one considers   \eta _ {X \mid  Y }  ^ {2} (
 +
the correlation ratio of   X
 +
relative to   Y ,  
 +
defined analogously). There is no simple relationship between   \eta _ {Y \mid  X }  ^ {2}
 +
and   \eta _ {X \mid  Y }  ^ {2} .  
 +
See also [[Correlation (in statistics)|Correlation (in statistics)]].

Latest revision as of 17:31, 5 June 2020


A characteristic of dependence between random variables. The correlation ratio of a random variable Y relative to a random variable X is the expression

\eta _ {Y \mid X } ^ {2} = \ 1 - {\mathsf E} \left [ \frac{ {\mathsf D} ( Y \mid X) }{ {\mathsf D} Y } \right ] ,

where {\mathsf D} Y is the variance of Y , {\mathsf D} ( Y \mid X) is the conditional variance of Y given X , which characterizes the spread of Y about its conditional mathematical expectation {\mathsf E} ( Y \mid X) for a given value of X . Invariably, 0 \leq \eta _ {Y \mid X } ^ {2} \leq 1 . The equality \eta _ {Y \mid X } ^ {2} = 0 corresponds to non-correlated random variables; \eta _ {Y \mid X } ^ {2} = 1 if and only if there is an exact functional relationship between Y and X ; if Y is linearly dependent on X , the correlation ratio coincides with the squared correlation coefficient. The correlation ratio is non-symmetric in X and Y , and so, together with \eta _ {Y \mid X } ^ {2} , one considers \eta _ {X \mid Y } ^ {2} ( the correlation ratio of X relative to Y , defined analogously). There is no simple relationship between \eta _ {Y \mid X } ^ {2} and \eta _ {X \mid Y } ^ {2} . See also Correlation (in statistics).

How to Cite This Entry:
Correlation ratio. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Correlation_ratio&oldid=46528
This article was adapted from an original article by A.V. Prokhorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article