Difference between revisions of "Conjugate directions"
From Encyclopedia of Mathematics
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0250001.png | ||
+ | $#A+1 = 14 n = 0 | ||
+ | $#C+1 = 14 : ~/encyclopedia/old_files/data/C025/C.0205000 Conjugate directions | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A pair of directions emanating from a point $ P $ | |
+ | on a surface $ S $ | ||
+ | such that the straight lines containing them are conjugate diameters of the [[Dupin indicatrix|Dupin indicatrix]] of $ S $ | ||
+ | at $ P $. | ||
+ | In order that the directions $ ( du : dv) $, | ||
+ | $ ( \delta u : \delta v) $ | ||
+ | at a point $ P $ | ||
+ | on $ S $ | ||
+ | be conjugate, it is necessary and sufficient that the following condition holds | ||
+ | |||
+ | $$ | ||
+ | L du \delta u + M ( du \delta v + dv \delta u) + | ||
+ | N dv \delta v = 0, | ||
+ | $$ | ||
+ | |||
+ | where $ L $, | ||
+ | $ M $ | ||
+ | and $ N $ | ||
+ | are the coefficients of the second fundamental form of $ S $ | ||
+ | evaluated at $ P $. | ||
+ | Example: a [[Principal direction|principal direction]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.V. Pogorelov, "Differential geometry" , Noordhoff (1959) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.V. Pogorelov, "Differential geometry" , Noordhoff (1959) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , '''1''' , Springer (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C.C. Hsiung, "A first course in differential geometry" , Wiley (1981) pp. Chapt. 3, Sect. 4</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , '''1''' , Springer (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C.C. Hsiung, "A first course in differential geometry" , Wiley (1981) pp. Chapt. 3, Sect. 4</TD></TR></table> |
Revision as of 17:46, 4 June 2020
A pair of directions emanating from a point $ P $
on a surface $ S $
such that the straight lines containing them are conjugate diameters of the Dupin indicatrix of $ S $
at $ P $.
In order that the directions $ ( du : dv) $,
$ ( \delta u : \delta v) $
at a point $ P $
on $ S $
be conjugate, it is necessary and sufficient that the following condition holds
$$ L du \delta u + M ( du \delta v + dv \delta u) + N dv \delta v = 0, $$
where $ L $, $ M $ and $ N $ are the coefficients of the second fundamental form of $ S $ evaluated at $ P $. Example: a principal direction.
References
[1] | A.V. Pogorelov, "Differential geometry" , Noordhoff (1959) (Translated from Russian) |
Comments
References
[a1] | W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , 1 , Springer (1973) |
[a2] | C.C. Hsiung, "A first course in differential geometry" , Wiley (1981) pp. Chapt. 3, Sect. 4 |
How to Cite This Entry:
Conjugate directions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conjugate_directions&oldid=46468
Conjugate directions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conjugate_directions&oldid=46468
This article was adapted from an original article by E.V. Shikin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article