Difference between revisions of "Conjugate class of functions"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | c0249901.png | ||
+ | $#A+1 = 22 n = 0 | ||
+ | $#C+1 = 22 : ~/encyclopedia/old_files/data/C024/C.0204990 Conjugate class of functions | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A concept in the theory of functions which is a concrete instance of [[Duality|duality]] in functions spaces. Thus, if a class $ X $ | |
+ | of functions is regarded as a Banach space or a topological vector space, then the conjugate class is defined as the class of functions isometrically isomorphic to the dual space $ X ^ {*} $. | ||
+ | For example, when $ 1 \leq p < \infty $ | ||
+ | and $ 1 / p + 1 / q = 1 $, | ||
+ | there is an isometric isomorphism between the spaces $ ( L _ {p} [ a , b ] ) ^ {*} $ | ||
+ | and $ L _ {q} [ a , b ] $, | ||
+ | under which corresponding elements $ x ^ {*} $ | ||
+ | and $ g $ | ||
+ | are related by | ||
− | + | $$ | |
+ | x ^ {*} ( f ) = \ | ||
+ | \int\limits _ { a } ^ { b } | ||
+ | g ( x) f ( x) d x . | ||
+ | $$ | ||
− | + | If one considers some class $ X $ | |
+ | of $ 2 \pi $- | ||
+ | periodic summable functions on $ [ - \pi , \pi ] $, | ||
+ | then the conjugate class is defined to be the class of functions conjugate to the functions in $ X $. | ||
+ | For example, the class conjugate to $ L _ {p} [ - \pi , \pi ] $( | ||
+ | $ 1 < p < \infty $) | ||
+ | coincides with the class of functions $ f $ | ||
+ | in $ L _ {p} [ - \pi , \pi ] $ | ||
+ | for which | ||
+ | |||
+ | $$ | ||
+ | \int\limits _ {- \pi } ^ \pi | ||
+ | f ( x) d x = 0 . | ||
+ | $$ | ||
+ | |||
+ | The class conjugate to $ \mathop{\rm Lip} \alpha $, | ||
+ | $ 0 < \alpha < 1 $, | ||
+ | coincides with the class of functions in $ \mathop{\rm Lip} \alpha $ | ||
+ | for which $ \int _ {- \pi } ^ \pi f ( x) d x = 0 $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Fréchet, ''C.R. Acad. Sci.'' , '''144''' (1907) pp. 1414–1416</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> F. Riesz, ''C.R. Acad. Sci.'' , '''144''' (1907) pp. 1409–1411</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I. [I. Privalov] Priwaloff, ''Bull. Soc. Math. France'' , '''44''' (1916) pp. 100–103</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Fréchet, ''C.R. Acad. Sci.'' , '''144''' (1907) pp. 1414–1416</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> F. Riesz, ''C.R. Acad. Sci.'' , '''144''' (1907) pp. 1409–1411</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I. [I. Privalov] Priwaloff, ''Bull. Soc. Math. France'' , '''44''' (1916) pp. 100–103</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958)</TD></TR></table> |
Latest revision as of 17:46, 4 June 2020
A concept in the theory of functions which is a concrete instance of duality in functions spaces. Thus, if a class $ X $
of functions is regarded as a Banach space or a topological vector space, then the conjugate class is defined as the class of functions isometrically isomorphic to the dual space $ X ^ {*} $.
For example, when $ 1 \leq p < \infty $
and $ 1 / p + 1 / q = 1 $,
there is an isometric isomorphism between the spaces $ ( L _ {p} [ a , b ] ) ^ {*} $
and $ L _ {q} [ a , b ] $,
under which corresponding elements $ x ^ {*} $
and $ g $
are related by
$$ x ^ {*} ( f ) = \ \int\limits _ { a } ^ { b } g ( x) f ( x) d x . $$
If one considers some class $ X $ of $ 2 \pi $- periodic summable functions on $ [ - \pi , \pi ] $, then the conjugate class is defined to be the class of functions conjugate to the functions in $ X $. For example, the class conjugate to $ L _ {p} [ - \pi , \pi ] $( $ 1 < p < \infty $) coincides with the class of functions $ f $ in $ L _ {p} [ - \pi , \pi ] $ for which
$$ \int\limits _ {- \pi } ^ \pi f ( x) d x = 0 . $$
The class conjugate to $ \mathop{\rm Lip} \alpha $, $ 0 < \alpha < 1 $, coincides with the class of functions in $ \mathop{\rm Lip} \alpha $ for which $ \int _ {- \pi } ^ \pi f ( x) d x = 0 $.
References
[1] | M. Fréchet, C.R. Acad. Sci. , 144 (1907) pp. 1414–1416 |
[2] | F. Riesz, C.R. Acad. Sci. , 144 (1907) pp. 1409–1411 |
[3] | I. [I. Privalov] Priwaloff, Bull. Soc. Math. France , 44 (1916) pp. 100–103 |
[4] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian) |
[5] | N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) |
Conjugate class of functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conjugate_class_of_functions&oldid=46467