Difference between revisions of "Congruence modulo a prime number"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0249001.png | ||
+ | $#A+1 = 43 n = 0 | ||
+ | $#C+1 = 43 : ~/encyclopedia/old_files/data/C024/C.0204900 Congruence modulo a prime number | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A congruence in which the modulus is a prime number. A distinguishing feature of the theory of congruences modulo a prime number is the fact that the residue classes modulo $ p $ | |
+ | form a finite field of $ p $ | ||
+ | elements. Congruences modulo a prime number can therefore be treated as equations over finite prime fields and algebraic-geometric methods, as well as methods of number theory, can be used to study them. | ||
− | + | One of the basic questions in the theory of congruences with one variable $ x $, | |
+ | which is of great significance to [[Algebraic number theory|algebraic number theory]], coding theory and other branches of mathematics, is the question of the study of the laws of decomposition | ||
− | + | $$ | |
+ | f( x) \equiv f _ {1} ( x) \dots f _ {r} ( x) ( \mathop{\rm mod} p) , | ||
+ | $$ | ||
− | + | modulo a prime number $ p $, | |
+ | of arbitrary integer polynomials $ f( x) $ | ||
+ | into irreducible factors. | ||
− | + | A second basic question in the theory of congruences modulo a prime number $ p $ | |
+ | with $ n \geq 2 $ | ||
+ | variables is the question of the number of solutions of a [[Congruence equation|congruence equation]] | ||
− | + | $$ | |
+ | f( x _ {1} \dots x _ {n} ) \equiv 0 ( \mathop{\rm mod} p), | ||
+ | $$ | ||
− | + | when $ x _ {i} $ | |
+ | $ ( 1 \leq i \leq n) $ | ||
+ | vary independently of each other over either the whole set of residue classes modulo $ p $( | ||
+ | problems of complete residue systems), or over a particular part of it (problems of incomplete residue systems). | ||
− | is correct (here | + | The first results of the research into the question of the number of solutions of quadratic and bi-quadratic congruences with two variables were obtained by C.F. Gauss [[#References|[1]]] and J.L. Lagrange [[#References|[2]]]. E. Artin [[#References|[3]]] established a link between the problem of the number of solutions of the hyper-elliptic congruences $ y ^ {2} \equiv f( x) $( |
+ | $ \mathop{\rm mod} p $) | ||
+ | on a complete residue system modulo the prime number $ p $ | ||
+ | and the Riemann hypothesis for $ \zeta $- | ||
+ | functions of algebraic function fields with a finite field of constants, which were introduced by him. In particular, he stated the hypothesis that for the number $ N _ {p} $ | ||
+ | of solutions of the congruence $ y ^ {2} \equiv f( x) $( | ||
+ | $ \mathop{\rm mod} p $), | ||
+ | where the polynomial $ f( x) = x ^ {n} + a _ {1} x ^ {n-} 1 + \dots + a _ {n} $ | ||
+ | is not the square of another polynomial modulo $ p $, | ||
+ | the estimate | ||
+ | |||
+ | $$ | ||
+ | | N _ {p} - p | \leq 2 \left [ n- | ||
+ | \frac{1}{2} | ||
+ | \right ] p ^ {1/2} | ||
+ | $$ | ||
+ | |||
+ | is correct (here $ [ x] $ | ||
+ | is the integer part of the number $ x $). | ||
Artin's hypothesis was first proved by H. Hasse [[#References|[6]]] for the case of the elliptic congruences | Artin's hypothesis was first proved by H. Hasse [[#References|[6]]] for the case of the elliptic congruences | ||
− | + | $$ | |
+ | y ^ {2} \equiv x ^ {3} + ax + b ( \mathop{\rm mod} p). | ||
+ | $$ | ||
A. Weil [[#References|[8]]] subsequently extended the method of Hasse to cover the general case and obtained the estimate | A. Weil [[#References|[8]]] subsequently extended the method of Hasse to cover the general case and obtained the estimate | ||
− | + | $$ | |
+ | | N _ {q} - q | \leq c( f ) q ^ {1/2} | ||
+ | $$ | ||
− | for the number | + | for the number $ N _ {q} $ |
+ | of solutions of the equation $ f( x, y) = 0 $ | ||
+ | in elements of the field $ F _ {q} $, | ||
+ | consisting of $ q = p ^ {r} $ | ||
+ | elements, where $ f( x, y) $ | ||
+ | is an absolutely-irreducible polynomial with coefficients from $ F _ {q} $. | ||
+ | The Hasse–Weil method is complicated and requires the use of modern abstract algebraic geometry. A simple and purely arithmetic method of proving the results of Hasse and Weil can be found in [[#References|[7]]]. | ||
− | Congruences modulo a prime number with | + | Congruences modulo a prime number with $ n $ |
+ | variables are less widely studied. The following theorem can be used here as a general result. Let $ f( x _ {1} \dots x _ {n} ) $ | ||
+ | be an absolutely-irreducible polynomial with integer coefficients. Then for the number $ N _ {p} $ | ||
+ | of solutions of the congruence | ||
− | + | $$ | |
+ | f( x _ {1} \dots x _ {n} ) \equiv 0 ( \mathop{\rm mod} p),\ \ | ||
+ | n \geq 2, | ||
+ | $$ | ||
the estimate | the estimate | ||
− | + | $$ | |
+ | | N _ {p} - p ^ {n-} 1 | \leq c( f ) p ^ {n-} 1- 1/2 | ||
+ | $$ | ||
− | holds, where the constant | + | holds, where the constant $ c( f ) $ |
+ | does not depend on $ p $. | ||
+ | A better estimate has been obtained by P. Deligne [[#References|[9]]]. | ||
For results on congruences modulo a prime number on an incomplete residue system, see [[Vinogradov hypotheses|Vinogradov hypotheses]]; [[Two-term congruence|Two-term congruence]]; [[Distribution of power residues and non-residues|Distribution of power residues and non-residues]]. | For results on congruences modulo a prime number on an incomplete residue system, see [[Vinogradov hypotheses|Vinogradov hypotheses]]; [[Two-term congruence|Two-term congruence]]; [[Distribution of power residues and non-residues|Distribution of power residues and non-residues]]. | ||
Line 43: | Line 103: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C.F. Gauss, "Untersuchungen über höhere Arithmetik" , Springer (1889) (Translated from Latin) {{MR|0188045}} {{ZBL|21.0166.04}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.L. Lagrange, "Démonstration d'un théorème d'arithmétique" , ''Oeuvres'' , '''3''' , Paris (1869) pp. 189–201</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Artin, "Quadratische Körper in Gebiete der höheren Kongruenzen II" ''Math. Z.'' , '''19''' (1924) pp. 207–246</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> I.M. Vinogradov, "Selected works" , Springer (1985) (Translated from Russian) {{MR|0807530}} {{ZBL|0577.01049}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> H. Hasse, "Zahlentheorie" , Akademie Verlag (1963) {{MR|0153659}} {{ZBL|1038.11500}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> H. Hasse, "Abstrakte Begründung der komplexen multiplication und Riemannsche Vermutung in Funktionenkörpern" ''Abh. Math. Sem. Hamburg Univ.'' , '''10''' (1934) pp. 325–347</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> S.A. Stepanov, "A constructive method in the theory of equations over finite fields" ''Trudy Mat. Inst. Steklov.'' , '''132''' (1973) pp. 237–246 (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> A. Weil, "Courbes algébriques et variétés abéliennes. Sur les courbes algébriques et les varietés qui s'en deduisent" , Hermann (1948)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> P. Deligne, "La conjecture de Weil I" ''Publ. Math. IHES'' , '''43''' (1974) pp. 273–307 {{MR|0340258}} {{ZBL|0314.14007}} {{ZBL|0287.14001}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C.F. Gauss, "Untersuchungen über höhere Arithmetik" , Springer (1889) (Translated from Latin) {{MR|0188045}} {{ZBL|21.0166.04}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.L. Lagrange, "Démonstration d'un théorème d'arithmétique" , ''Oeuvres'' , '''3''' , Paris (1869) pp. 189–201</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Artin, "Quadratische Körper in Gebiete der höheren Kongruenzen II" ''Math. Z.'' , '''19''' (1924) pp. 207–246</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> I.M. Vinogradov, "Selected works" , Springer (1985) (Translated from Russian) {{MR|0807530}} {{ZBL|0577.01049}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> H. Hasse, "Zahlentheorie" , Akademie Verlag (1963) {{MR|0153659}} {{ZBL|1038.11500}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> H. Hasse, "Abstrakte Begründung der komplexen multiplication und Riemannsche Vermutung in Funktionenkörpern" ''Abh. Math. Sem. Hamburg Univ.'' , '''10''' (1934) pp. 325–347</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> S.A. Stepanov, "A constructive method in the theory of equations over finite fields" ''Trudy Mat. Inst. Steklov.'' , '''132''' (1973) pp. 237–246 (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> A. Weil, "Courbes algébriques et variétés abéliennes. Sur les courbes algébriques et les varietés qui s'en deduisent" , Hermann (1948)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> P. Deligne, "La conjecture de Weil I" ''Publ. Math. IHES'' , '''43''' (1974) pp. 273–307 {{MR|0340258}} {{ZBL|0314.14007}} {{ZBL|0287.14001}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | A polynomial | + | A polynomial $ f ( x , y ) $ |
+ | over $ F _ {q} $ | ||
+ | is absolutely irreducible if it is still irreducible over the algebraic closure $ \overline{F}\; _ {q} $ | ||
+ | of $ F _ {q} $. | ||
+ | For some material on polynomials over finite fields and their factorizations in the context of coding theory cf. [[#References|[a1]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.J. MacWilliams, N.J.A. Sloane, "The theory of error-correcting codes" , '''I-II''' , North-Holland (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapts. 5; 7; 8 {{MR|0568909}} {{ZBL|0423.10001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.J. MacWilliams, N.J.A. Sloane, "The theory of error-correcting codes" , '''I-II''' , North-Holland (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapts. 5; 7; 8 {{MR|0568909}} {{ZBL|0423.10001}} </TD></TR></table> |
Latest revision as of 17:46, 4 June 2020
A congruence in which the modulus is a prime number. A distinguishing feature of the theory of congruences modulo a prime number is the fact that the residue classes modulo $ p $
form a finite field of $ p $
elements. Congruences modulo a prime number can therefore be treated as equations over finite prime fields and algebraic-geometric methods, as well as methods of number theory, can be used to study them.
One of the basic questions in the theory of congruences with one variable $ x $, which is of great significance to algebraic number theory, coding theory and other branches of mathematics, is the question of the study of the laws of decomposition
$$ f( x) \equiv f _ {1} ( x) \dots f _ {r} ( x) ( \mathop{\rm mod} p) , $$
modulo a prime number $ p $, of arbitrary integer polynomials $ f( x) $ into irreducible factors.
A second basic question in the theory of congruences modulo a prime number $ p $ with $ n \geq 2 $ variables is the question of the number of solutions of a congruence equation
$$ f( x _ {1} \dots x _ {n} ) \equiv 0 ( \mathop{\rm mod} p), $$
when $ x _ {i} $ $ ( 1 \leq i \leq n) $ vary independently of each other over either the whole set of residue classes modulo $ p $( problems of complete residue systems), or over a particular part of it (problems of incomplete residue systems).
The first results of the research into the question of the number of solutions of quadratic and bi-quadratic congruences with two variables were obtained by C.F. Gauss [1] and J.L. Lagrange [2]. E. Artin [3] established a link between the problem of the number of solutions of the hyper-elliptic congruences $ y ^ {2} \equiv f( x) $( $ \mathop{\rm mod} p $) on a complete residue system modulo the prime number $ p $ and the Riemann hypothesis for $ \zeta $- functions of algebraic function fields with a finite field of constants, which were introduced by him. In particular, he stated the hypothesis that for the number $ N _ {p} $ of solutions of the congruence $ y ^ {2} \equiv f( x) $( $ \mathop{\rm mod} p $), where the polynomial $ f( x) = x ^ {n} + a _ {1} x ^ {n-} 1 + \dots + a _ {n} $ is not the square of another polynomial modulo $ p $, the estimate
$$ | N _ {p} - p | \leq 2 \left [ n- \frac{1}{2} \right ] p ^ {1/2} $$
is correct (here $ [ x] $ is the integer part of the number $ x $).
Artin's hypothesis was first proved by H. Hasse [6] for the case of the elliptic congruences
$$ y ^ {2} \equiv x ^ {3} + ax + b ( \mathop{\rm mod} p). $$
A. Weil [8] subsequently extended the method of Hasse to cover the general case and obtained the estimate
$$ | N _ {q} - q | \leq c( f ) q ^ {1/2} $$
for the number $ N _ {q} $ of solutions of the equation $ f( x, y) = 0 $ in elements of the field $ F _ {q} $, consisting of $ q = p ^ {r} $ elements, where $ f( x, y) $ is an absolutely-irreducible polynomial with coefficients from $ F _ {q} $. The Hasse–Weil method is complicated and requires the use of modern abstract algebraic geometry. A simple and purely arithmetic method of proving the results of Hasse and Weil can be found in [7].
Congruences modulo a prime number with $ n $ variables are less widely studied. The following theorem can be used here as a general result. Let $ f( x _ {1} \dots x _ {n} ) $ be an absolutely-irreducible polynomial with integer coefficients. Then for the number $ N _ {p} $ of solutions of the congruence
$$ f( x _ {1} \dots x _ {n} ) \equiv 0 ( \mathop{\rm mod} p),\ \ n \geq 2, $$
the estimate
$$ | N _ {p} - p ^ {n-} 1 | \leq c( f ) p ^ {n-} 1- 1/2 $$
holds, where the constant $ c( f ) $ does not depend on $ p $. A better estimate has been obtained by P. Deligne [9].
For results on congruences modulo a prime number on an incomplete residue system, see Vinogradov hypotheses; Two-term congruence; Distribution of power residues and non-residues.
References
[1] | C.F. Gauss, "Untersuchungen über höhere Arithmetik" , Springer (1889) (Translated from Latin) MR0188045 Zbl 21.0166.04 |
[2] | J.L. Lagrange, "Démonstration d'un théorème d'arithmétique" , Oeuvres , 3 , Paris (1869) pp. 189–201 |
[3] | E. Artin, "Quadratische Körper in Gebiete der höheren Kongruenzen II" Math. Z. , 19 (1924) pp. 207–246 |
[4] | I.M. Vinogradov, "Selected works" , Springer (1985) (Translated from Russian) MR0807530 Zbl 0577.01049 |
[5] | H. Hasse, "Zahlentheorie" , Akademie Verlag (1963) MR0153659 Zbl 1038.11500 |
[6] | H. Hasse, "Abstrakte Begründung der komplexen multiplication und Riemannsche Vermutung in Funktionenkörpern" Abh. Math. Sem. Hamburg Univ. , 10 (1934) pp. 325–347 |
[7] | S.A. Stepanov, "A constructive method in the theory of equations over finite fields" Trudy Mat. Inst. Steklov. , 132 (1973) pp. 237–246 (In Russian) |
[8] | A. Weil, "Courbes algébriques et variétés abéliennes. Sur les courbes algébriques et les varietés qui s'en deduisent" , Hermann (1948) |
[9] | P. Deligne, "La conjecture de Weil I" Publ. Math. IHES , 43 (1974) pp. 273–307 MR0340258 Zbl 0314.14007 Zbl 0287.14001 |
Comments
A polynomial $ f ( x , y ) $ over $ F _ {q} $ is absolutely irreducible if it is still irreducible over the algebraic closure $ \overline{F}\; _ {q} $ of $ F _ {q} $. For some material on polynomials over finite fields and their factorizations in the context of coding theory cf. [a1].
References
[a1] | F.J. MacWilliams, N.J.A. Sloane, "The theory of error-correcting codes" , I-II , North-Holland (1977) |
[a2] | G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapts. 5; 7; 8 MR0568909 Zbl 0423.10001 |
Congruence modulo a prime number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Congruence_modulo_a_prime_number&oldid=46463