|
|
Line 1: |
Line 1: |
− | A measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c0238001.png" /> on a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c0238002.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c0238003.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c0238004.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c0238005.png" /> imply <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c0238006.png" /> for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c0238007.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c0238008.png" /> is the total variation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c0238009.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380010.png" /> for a positive measure).
| + | <!-- |
| + | c0238001.png |
| + | $#A+1 = 32 n = 0 |
| + | $#C+1 = 32 : ~/encyclopedia/old_files/data/C023/C.0203800 Complete measure |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
| + | A measure $ \mu $ |
| + | on a $ \sigma $- |
| + | algebra $ \Sigma $ |
| + | for which $ A \in \Sigma $ |
| + | and $ | \mu | ( A) = 0 $ |
| + | imply $ E \in \Sigma $ |
| + | for every $ E \subset A $. |
| + | Here $ | \mu | $ |
| + | is the total variation of $ \mu $( |
| + | $ | \mu | = \mu $ |
| + | for a positive measure). |
| | | |
| ====Comments==== | | ====Comments==== |
− | Complete measures arise as follows (cf. [[#References|[a1]]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380011.png" /> be a set, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380012.png" /> a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380013.png" />-algebra of subsets of it and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380014.png" /> a positive measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380015.png" />. It may happen that some set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380016.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380017.png" /> has a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380018.png" /> not belonging to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380019.png" />. It is natural, then, to define the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380020.png" /> on such a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380021.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380022.png" />. | + | Complete measures arise as follows (cf. [[#References|[a1]]]). Let $ X $ |
| + | be a set, $ \Sigma $ |
| + | a $ \sigma $- |
| + | algebra of subsets of it and $ \mu $ |
| + | a positive measure on $ \Sigma $. |
| + | It may happen that some set $ E \in \Sigma $ |
| + | with $ \mu ( E) = 0 $ |
| + | has a subset $ N $ |
| + | not belonging to $ \Sigma $. |
| + | It is natural, then, to define the measure $ \mu $ |
| + | on such a set $ N $ |
| + | as $ \mu ( N) = 0 $. |
| | | |
− | In general, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380023.png" /> be the collection of all sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380024.png" /> for which there exists sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380025.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380027.png" />. In this situation, define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380028.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380029.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380030.png" />-algebra and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380031.png" /> becomes a complete measure on it (this process is called completion). <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023800/c02380032.png" /> is then called a complete measure space. | + | In general, let $ \Sigma ^ {*} $ |
| + | be the collection of all sets $ N $ |
| + | for which there exists sets $ E , F \in \Sigma $ |
| + | such that $ E \subset N \subset F $, |
| + | $ \mu ( F - E ) = 0 $. |
| + | In this situation, define $ \mu ( N) = 0 $. |
| + | Then $ \Sigma ^ {*} $ |
| + | is a $ \sigma $- |
| + | algebra and $ \mu $ |
| + | becomes a complete measure on it (this process is called completion). $ ( X , \Sigma ^ {*} , \mu ) $ |
| + | is then called a complete measure space. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Rudin, "Real and complex analysis" , McGraw-Hill (1974) pp. 24</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Rudin, "Real and complex analysis" , McGraw-Hill (1974) pp. 24</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965)</TD></TR></table> |
A measure $ \mu $
on a $ \sigma $-
algebra $ \Sigma $
for which $ A \in \Sigma $
and $ | \mu | ( A) = 0 $
imply $ E \in \Sigma $
for every $ E \subset A $.
Here $ | \mu | $
is the total variation of $ \mu $(
$ | \mu | = \mu $
for a positive measure).
Complete measures arise as follows (cf. [a1]). Let $ X $
be a set, $ \Sigma $
a $ \sigma $-
algebra of subsets of it and $ \mu $
a positive measure on $ \Sigma $.
It may happen that some set $ E \in \Sigma $
with $ \mu ( E) = 0 $
has a subset $ N $
not belonging to $ \Sigma $.
It is natural, then, to define the measure $ \mu $
on such a set $ N $
as $ \mu ( N) = 0 $.
In general, let $ \Sigma ^ {*} $
be the collection of all sets $ N $
for which there exists sets $ E , F \in \Sigma $
such that $ E \subset N \subset F $,
$ \mu ( F - E ) = 0 $.
In this situation, define $ \mu ( N) = 0 $.
Then $ \Sigma ^ {*} $
is a $ \sigma $-
algebra and $ \mu $
becomes a complete measure on it (this process is called completion). $ ( X , \Sigma ^ {*} , \mu ) $
is then called a complete measure space.
References
[a1] | W. Rudin, "Real and complex analysis" , McGraw-Hill (1974) pp. 24 |
[a2] | E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) |