Difference between revisions of "Comparison theorem (algebraic geometry)"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | c0236501.png | ||
+ | $#A+1 = 17 n = 0 | ||
+ | $#C+1 = 17 : ~/encyclopedia/old_files/data/C023/C.0203650 Comparison theorem (algebraic geometry) | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A theorem on the relations between homotopy invariants of schemes of finite type over the field $ \mathbf C $ | |
+ | in classical and étale topologies. | ||
− | + | Let $ X $ | |
+ | be a scheme of finite type over $ \mathbf C $, | ||
+ | while $ F $ | ||
+ | is a constructible torsion sheaf of Abelian groups on $ X _ {\textrm{ et } } $. | ||
+ | Then $ F $ | ||
+ | induces a sheaf on $ X $ | ||
+ | in the classical topology, and there exist canonical isomorphisms | ||
− | + | $$ | |
+ | H ^ {q} ( X _ {\textrm{ et } } , F) \cong \ | ||
+ | H ^ {q} ( X _ {\textrm{ class } } , F). | ||
+ | $$ | ||
− | Moreover, if | + | On the other hand, a finite topological covering of a smooth scheme $ X $ |
+ | of finite type over $ \mathbf C $ | ||
+ | has a unique algebraic structure (Riemann's existence theorem). The fundamental étale group of $ X _ {\textrm{ et } } $[[#References|[1]]] is therefore the pro-finite completion of the ordinary group of classes of homotopically equivalent loops: | ||
+ | |||
+ | $$ | ||
+ | \pi _ {1} ( X _ {\textrm{ et } } ) = \ | ||
+ | [ \pi _ {1} ( X _ {\textrm{ class } } )] \widehat{ {}} . | ||
+ | $$ | ||
+ | |||
+ | Moreover, if $ X _ {\textrm{ class } } $ | ||
+ | is simply connected, then $ X _ {\textrm{ et } } = \widehat{X} _ { \mathop{\rm cl} } $, | ||
+ | where $ X _ { \mathop{\rm cl} } $ | ||
+ | and $ X _ {\textrm{ et } } $ | ||
+ | are the classical and étale homotopy types of the scheme $ X $, | ||
+ | respectively (see [[#References|[1]]], [[#References|[2]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Artin, "The étale topology of schemes" , ''Proc. Internat. Congress Mathematicians (Moscow, 1966)'' , Mir (1968) pp. 44–56</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Sullivan, "Geometric topology" , M.I.T. (1971) (Notes)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Artin, "The étale topology of schemes" , ''Proc. Internat. Congress Mathematicians (Moscow, 1966)'' , Mir (1968) pp. 44–56</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Sullivan, "Geometric topology" , M.I.T. (1971) (Notes)</TD></TR></table> |
Revision as of 17:45, 4 June 2020
A theorem on the relations between homotopy invariants of schemes of finite type over the field $ \mathbf C $
in classical and étale topologies.
Let $ X $ be a scheme of finite type over $ \mathbf C $, while $ F $ is a constructible torsion sheaf of Abelian groups on $ X _ {\textrm{ et } } $. Then $ F $ induces a sheaf on $ X $ in the classical topology, and there exist canonical isomorphisms
$$ H ^ {q} ( X _ {\textrm{ et } } , F) \cong \ H ^ {q} ( X _ {\textrm{ class } } , F). $$
On the other hand, a finite topological covering of a smooth scheme $ X $ of finite type over $ \mathbf C $ has a unique algebraic structure (Riemann's existence theorem). The fundamental étale group of $ X _ {\textrm{ et } } $[1] is therefore the pro-finite completion of the ordinary group of classes of homotopically equivalent loops:
$$ \pi _ {1} ( X _ {\textrm{ et } } ) = \ [ \pi _ {1} ( X _ {\textrm{ class } } )] \widehat{ {}} . $$
Moreover, if $ X _ {\textrm{ class } } $ is simply connected, then $ X _ {\textrm{ et } } = \widehat{X} _ { \mathop{\rm cl} } $, where $ X _ { \mathop{\rm cl} } $ and $ X _ {\textrm{ et } } $ are the classical and étale homotopy types of the scheme $ X $, respectively (see [1], [2]).
References
[1] | M. Artin, "The étale topology of schemes" , Proc. Internat. Congress Mathematicians (Moscow, 1966) , Mir (1968) pp. 44–56 |
[2] | D. Sullivan, "Geometric topology" , M.I.T. (1971) (Notes) |
Comparison theorem (algebraic geometry). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Comparison_theorem_(algebraic_geometry)&oldid=46413