|
|
Line 1: |
Line 1: |
− | An order relation on the set of all topologies on one and the same set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236301.png" />. A topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236302.png" /> majorizes a topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236303.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236304.png" /> is not weaker than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236305.png" />), if the identity mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236306.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236307.png" /> is the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236308.png" /> with the topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c0236309.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363010.png" />, is continuous. Moreover, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363011.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363012.png" /> is stronger than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363013.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363014.png" /> is weaker than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363015.png" />). | + | <!-- |
| + | c0236301.png |
| + | $#A+1 = 36 n = 0 |
| + | $#C+1 = 36 : ~/encyclopedia/old_files/data/C023/C.0203630 Comparison of topologies |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| + | An order relation on the set of all topologies on one and the same set $ X $. |
| + | A topology $ {\mathcal T} _ {1} $ |
| + | majorizes a topology $ {\mathcal T} _ {2} $( |
| + | or $ {\mathcal T} _ {1} $ |
| + | is not weaker than $ {\mathcal T} _ {2} $), |
| + | if the identity mapping $ X _ {1} \rightarrow X _ {2} $, |
| + | where $ X _ {i} $ |
| + | is the set $ X $ |
| + | with the topology $ {\mathcal T} _ {i} $, |
| + | $ i = 1, 2 $, |
| + | is continuous. Moreover, if $ {\mathcal T} _ {1} \neq {\mathcal T} _ {2} $, |
| + | then $ {\mathcal T} _ {1} $ |
| + | is stronger than $ {\mathcal T} _ {2} $( |
| + | or $ {\mathcal T} _ {2} $ |
| + | is weaker than $ {\mathcal T} _ {1} $). |
| | | |
| The following statements are equivalent: | | The following statements are equivalent: |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363016.png" /> majorizes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363017.png" />. | + | 1) $ {\mathcal T} _ {1} $ |
| + | majorizes $ {\mathcal T} _ {2} $. |
| | | |
− | 2) For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363018.png" />, every neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363019.png" /> in the topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363020.png" /> is a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363021.png" /> in the topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363022.png" />. | + | 2) For any $ x \in X $, |
| + | every neighbourhood of $ x $ |
| + | in the topology $ {\mathcal T} _ {2} $ |
| + | is a neighbourhood of $ x $ |
| + | in the topology $ {\mathcal T} _ {1} $. |
| | | |
− | 3) For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363023.png" />, the closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363024.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363025.png" /> contains the closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363026.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363027.png" />. | + | 3) For any $ A \subset X $, |
| + | the closure of $ A $ |
| + | in $ {\mathcal T} _ {2} $ |
| + | contains the closure of $ A $ |
| + | in $ {\mathcal T} _ {1} $. |
| | | |
− | 4) Every set from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363028.png" />, closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363029.png" />, is also closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363030.png" />. | + | 4) Every set from $ X $, |
| + | closed in $ {\mathcal T} _ {2} $, |
| + | is also closed in $ {\mathcal T} _ {1} $. |
| | | |
− | 5) Every set that is open in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363031.png" /> is open in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363032.png" />. | + | 5) Every set that is open in $ {\mathcal T} _ {2} $ |
| + | is open in $ {\mathcal T} _ {1} $. |
| | | |
− | In the ordered set of topologies on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363033.png" />, the discrete topology is the strongest, while the topology whose only closed sets are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363035.png" /> is the weakest. Figuratively speaking, the stronger the topology, the more open sets, closed sets and neighbourhoods there are in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023630/c02363036.png" />; the stronger the topology, the smaller the closure of a set (and the larger its interior) and the smaller the number of everywhere-dense sets. | + | In the ordered set of topologies on $ X $, |
| + | the discrete topology is the strongest, while the topology whose only closed sets are $ \emptyset $ |
| + | and $ X $ |
| + | is the weakest. Figuratively speaking, the stronger the topology, the more open sets, closed sets and neighbourhoods there are in $ X $; |
| + | the stronger the topology, the smaller the closure of a set (and the larger its interior) and the smaller the number of everywhere-dense sets. |
An order relation on the set of all topologies on one and the same set $ X $.
A topology $ {\mathcal T} _ {1} $
majorizes a topology $ {\mathcal T} _ {2} $(
or $ {\mathcal T} _ {1} $
is not weaker than $ {\mathcal T} _ {2} $),
if the identity mapping $ X _ {1} \rightarrow X _ {2} $,
where $ X _ {i} $
is the set $ X $
with the topology $ {\mathcal T} _ {i} $,
$ i = 1, 2 $,
is continuous. Moreover, if $ {\mathcal T} _ {1} \neq {\mathcal T} _ {2} $,
then $ {\mathcal T} _ {1} $
is stronger than $ {\mathcal T} _ {2} $(
or $ {\mathcal T} _ {2} $
is weaker than $ {\mathcal T} _ {1} $).
The following statements are equivalent:
1) $ {\mathcal T} _ {1} $
majorizes $ {\mathcal T} _ {2} $.
2) For any $ x \in X $,
every neighbourhood of $ x $
in the topology $ {\mathcal T} _ {2} $
is a neighbourhood of $ x $
in the topology $ {\mathcal T} _ {1} $.
3) For any $ A \subset X $,
the closure of $ A $
in $ {\mathcal T} _ {2} $
contains the closure of $ A $
in $ {\mathcal T} _ {1} $.
4) Every set from $ X $,
closed in $ {\mathcal T} _ {2} $,
is also closed in $ {\mathcal T} _ {1} $.
5) Every set that is open in $ {\mathcal T} _ {2} $
is open in $ {\mathcal T} _ {1} $.
In the ordered set of topologies on $ X $,
the discrete topology is the strongest, while the topology whose only closed sets are $ \emptyset $
and $ X $
is the weakest. Figuratively speaking, the stronger the topology, the more open sets, closed sets and neighbourhoods there are in $ X $;
the stronger the topology, the smaller the closure of a set (and the larger its interior) and the smaller the number of everywhere-dense sets.