Namespaces
Variants
Actions

Difference between revisions of "Circle problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The problem of obtaining the best asymptotic estimate for the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c0222901.png" /> of lattice points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c0222902.png" /> in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c0222903.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c0222904.png" /> be the greatest lower bound of the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c0222905.png" /> in the equality
+
<!--
 +
c0222901.png
 +
$#A+1 = 36 n = 0
 +
$#C+1 = 36 : ~/encyclopedia/old_files/data/C022/C.0202290 Circle problem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c0222906.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
C.F. Gauss proved that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c0222907.png" /> (see [[#References|[1]]]). W. Sierpiński, using G.F. Voronoi's method [[#References|[3]]], proved that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c0222908.png" /> (see [[#References|[2]]]). In [[#References|[4]]] it was shown that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c0222909.png" />. The most recent (1987) estimate is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229010.png" />. There is a conjecture that the remainder term in formula (*) is
+
The problem of obtaining the best asymptotic estimate for the number  $  A ( x) $
 +
of lattice points  $  ( u, v) $
 +
in the disc  $  u  ^ {2} + v  ^ {2} \leq  x $.  
 +
Let  $  \theta $
 +
be the greatest lower bound of the numbers  $  \alpha $
 +
in the equality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229011.png" /></td> </tr></table>
+
$$ \tag{* }
 +
A ( x)  = \
 +
\pi x + O ( x  ^  \alpha  ).
 +
$$
 +
 
 +
C.F. Gauss proved that  $  \theta \leq  1/2 $(
 +
see [[#References|[1]]]). W. Sierpiński, using G.F. Voronoi's method [[#References|[3]]], proved that  $  \theta \leq  1/3 $(
 +
see [[#References|[2]]]). In [[#References|[4]]] it was shown that  $  \theta \leq  13/40 $.
 +
The most recent (1987) estimate is  $  \theta \leq  12/37 $.
 +
There is a conjecture that the remainder term in formula (*) is
 +
 
 +
$$
 +
O ( x  ^ {1/4}  \mathop{\rm log}  ^ {2}  x).
 +
$$
  
 
There is a mean-value theorem for the circle problem:
 
There is a mean-value theorem for the circle problem:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229012.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { 0 } ^ { N }
 +
( A ( x) - \pi x)  ^ {2}  dx  = \
 +
CN  ^ {3/2} + O ( N ^ {1 + \epsilon } ),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229013.png" /> is some absolute constant and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229014.png" /> is arbitrary.
+
where $  C $
 +
is some absolute constant and $  \epsilon > 0 $
 +
is arbitrary.
  
In terms of its content and the methods used to attack it, the circle problem is largely analogous to Dirichlet's divisor problem (see [[Divisor problems|Divisor problems]]). A generalization of the circle problem is the sphere problem — the problem of an estimate for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229015.png" />, the number of lattice points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229016.png" /> in the ball <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229017.png" />. A basis for such an estimate is the formula
+
In terms of its content and the methods used to attack it, the circle problem is largely analogous to Dirichlet's divisor problem (see [[Divisor problems|Divisor problems]]). A generalization of the circle problem is the sphere problem — the problem of an estimate for $  B ( x) $,  
 +
the number of lattice points $  ( u, v, w) $
 +
in the ball $  u  ^ {2} + v  ^ {2} + w  ^ {2} \leq  x $.  
 +
A basis for such an estimate is the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229018.png" /></td> </tr></table>
+
$$
 +
B ( x)  = \
 +
24G ( x) +
 +
O ( \sqrt x ),
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229019.png" /></td> </tr></table>
+
$$
 +
G ( x) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229020.png" /></td> </tr></table>
+
$$
 +
= \
 +
\sum _ {0 < u \leq  \sqrt x/3 }  \sum _ {u < v \leq  \sqrt {( x -
 +
u  ^ {2} )/2 } } ([ \sqrt {x - u  ^ {2} - v  ^ {2} } ] - v) +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229021.png" /></td> </tr></table>
+
$$
 +
+
 +
{
 +
\frac{1}{2}
 +
} \sum _ {0 < v \leq  \sqrt x/2 } ([ \sqrt {x - v  ^ {2} } ] - v) +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229022.png" /></td> </tr></table>
+
$$
 +
+
 +
{
 +
\frac{1}{2}
 +
} \sum _ {0 < u \leq  \sqrt x/3 } ([ \sqrt
 +
{x - 2u  ^ {2} } ] - u) + O ( \sqrt x ),
 +
$$
  
 
which is established by partitioning the ball into 24 sections by the six planes
 
which is established by partitioning the ball into 24 sections by the six planes
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229023.png" /></td> </tr></table>
+
$$
 +
= v,\ \
 +
= w,\ \
 +
= w,\ \
 +
= 0,\ \
 +
= 0,\ \
 +
= 0,
 +
$$
 +
 
 +
where each section contains the same number of lattice points, provided one counts points on the sectioning planes with coefficients  $  1/2 $.  
 +
The principal term of growth of  $  B ( x) $
 +
is equal to the volume of the ball
 +
 
 +
$$
 +
V ( x)  = \
  
where each section contains the same number of lattice points, provided one counts points on the sectioning planes with coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229024.png" />. The principal term of growth of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229025.png" /> is equal to the volume of the ball
+
\frac{4 \pi }{3}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229026.png" /></td> </tr></table>
+
x  ^ {3/2} ;
 +
$$
  
hence the problem reduces to estimating <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229027.png" />, which is the sum of the fractional parts of the functions in square brackets in the formula for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229028.png" />. The most profound estimates for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229029.png" /> have been obtained using I.M. Vinogradov's method of trigonometric sums [[#References|[5]]], [[#References|[6]]]:
+
hence the problem reduces to estimating $  P ( x) = B ( x) - V ( x) $,  
 +
which is the sum of the fractional parts of the functions in square brackets in the formula for $  G ( x) $.  
 +
The most profound estimates for $  P ( x) $
 +
have been obtained using I.M. Vinogradov's method of trigonometric sums [[#References|[5]]], [[#References|[6]]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229030.png" /></td> </tr></table>
+
$$
 +
P ( x)  = \
 +
O ( x  ^ {2/3}  \mathop{\rm log}  ^ {6}  x).
 +
$$
  
 
There is a conjecture that
 
There is a conjecture that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229031.png" /></td> </tr></table>
+
$$
 +
P ( x)  = \
 +
O ( x  ^ {1/2}  \mathop{\rm log}  ^ {2}  x).
 +
$$
  
A generalization of the circle and sphere problems is the problem of estimating <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229032.png" />, the number of lattice points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229034.png" />-dimensional ellipsoids
+
A generalization of the circle and sphere problems is the problem of estimating $  A _ {F} ( x) $,  
 +
the number of lattice points in $  n $-
 +
dimensional ellipsoids
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229035.png" /></td> </tr></table>
+
$$
 +
F ( u _ {1} \dots u _ {n} )  = \
 +
\sum _ {r, \nu = 1 } ^ { n }
 +
a _ {r \nu }  u _ {r} u _  \nu  \leq  x,\ \
 +
a _ {r \nu }  = a _ {\nu r }  ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229036.png" /> is a positive-definite quadratic form [[#References|[7]]].
+
where $  F $
 +
is a positive-definite quadratic form [[#References|[7]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C.F. Gauss,  , ''Werke'' , '''2''' , Göttingen  (1863)  pp. 269–291</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W. Sierpiński,  ''Prace Mat. Fiz.'' , '''17'''  (1906)  pp. 77–118</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.F. Voronoi,  , ''Collected works'' , '''1''' , Kiev  (1952)  pp. 5  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L.-K. Hua,  "The method of trigonometric sums and its applications to number theory" , ''Selected papers'' , Springer  (1983)  pp. 124–135  (Translated from German)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  I.M. Vinogradov,  "On the number of integer points in a ball"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''27''' :  5  (1963)  pp. 957–968  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  I.M. Vinogradov,  "Basic variants of the method of trigonometric sums" , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  B. Novák,  "Lattice points in more-dimensional ellipsoids"  ''Trudy Mat. Inst. Akad. Nauk SSSR'' , '''132'''  (1973)  pp. 145–150  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C.F. Gauss,  , ''Werke'' , '''2''' , Göttingen  (1863)  pp. 269–291</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W. Sierpiński,  ''Prace Mat. Fiz.'' , '''17'''  (1906)  pp. 77–118</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.F. Voronoi,  , ''Collected works'' , '''1''' , Kiev  (1952)  pp. 5  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L.-K. Hua,  "The method of trigonometric sums and its applications to number theory" , ''Selected papers'' , Springer  (1983)  pp. 124–135  (Translated from German)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  I.M. Vinogradov,  "On the number of integer points in a ball"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''27''' :  5  (1963)  pp. 957–968  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  I.M. Vinogradov,  "Basic variants of the method of trigonometric sums" , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  B. Novák,  "Lattice points in more-dimensional ellipsoids"  ''Trudy Mat. Inst. Akad. Nauk SSSR'' , '''132'''  (1973)  pp. 145–150  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The most recent estimate referred to above, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229037.png" />, was obtained in 1963 by J. Chen [[#References|[a1]]]. The circle problem is also known as the Gauss circle problem.
+
The most recent estimate referred to above, $  \theta \leq  12/37 $,  
 +
was obtained in 1963 by J. Chen [[#References|[a1]]]. The circle problem is also known as the Gauss circle problem.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Chen,  "The lattice-points in a circle"  ''Sci. Sinica'' , '''12'''  (1963)  pp. 633–649</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.Z. Walfisz,  "Gitterpunkte in mehrdimensionalen Kugeln" , PWN  (1957)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Chen,  "The lattice-points in a circle"  ''Sci. Sinica'' , '''12'''  (1963)  pp. 633–649</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.Z. Walfisz,  "Gitterpunkte in mehrdimensionalen Kugeln" , PWN  (1957)</TD></TR></table>

Latest revision as of 16:44, 4 June 2020


The problem of obtaining the best asymptotic estimate for the number $ A ( x) $ of lattice points $ ( u, v) $ in the disc $ u ^ {2} + v ^ {2} \leq x $. Let $ \theta $ be the greatest lower bound of the numbers $ \alpha $ in the equality

$$ \tag{* } A ( x) = \ \pi x + O ( x ^ \alpha ). $$

C.F. Gauss proved that $ \theta \leq 1/2 $( see [1]). W. Sierpiński, using G.F. Voronoi's method [3], proved that $ \theta \leq 1/3 $( see [2]). In [4] it was shown that $ \theta \leq 13/40 $. The most recent (1987) estimate is $ \theta \leq 12/37 $. There is a conjecture that the remainder term in formula (*) is

$$ O ( x ^ {1/4} \mathop{\rm log} ^ {2} x). $$

There is a mean-value theorem for the circle problem:

$$ \int\limits _ { 0 } ^ { N } ( A ( x) - \pi x) ^ {2} dx = \ CN ^ {3/2} + O ( N ^ {1 + \epsilon } ), $$

where $ C $ is some absolute constant and $ \epsilon > 0 $ is arbitrary.

In terms of its content and the methods used to attack it, the circle problem is largely analogous to Dirichlet's divisor problem (see Divisor problems). A generalization of the circle problem is the sphere problem — the problem of an estimate for $ B ( x) $, the number of lattice points $ ( u, v, w) $ in the ball $ u ^ {2} + v ^ {2} + w ^ {2} \leq x $. A basis for such an estimate is the formula

$$ B ( x) = \ 24G ( x) + O ( \sqrt x ), $$

where

$$ G ( x) = $$

$$ = \ \sum _ {0 < u \leq \sqrt x/3 } \sum _ {u < v \leq \sqrt {( x - u ^ {2} )/2 } } ([ \sqrt {x - u ^ {2} - v ^ {2} } ] - v) + $$

$$ + { \frac{1}{2} } \sum _ {0 < v \leq \sqrt x/2 } ([ \sqrt {x - v ^ {2} } ] - v) + $$

$$ + { \frac{1}{2} } \sum _ {0 < u \leq \sqrt x/3 } ([ \sqrt {x - 2u ^ {2} } ] - u) + O ( \sqrt x ), $$

which is established by partitioning the ball into 24 sections by the six planes

$$ u = v,\ \ u = w,\ \ v = w,\ \ v = 0,\ \ u = 0,\ \ w = 0, $$

where each section contains the same number of lattice points, provided one counts points on the sectioning planes with coefficients $ 1/2 $. The principal term of growth of $ B ( x) $ is equal to the volume of the ball

$$ V ( x) = \ \frac{4 \pi }{3} x ^ {3/2} ; $$

hence the problem reduces to estimating $ P ( x) = B ( x) - V ( x) $, which is the sum of the fractional parts of the functions in square brackets in the formula for $ G ( x) $. The most profound estimates for $ P ( x) $ have been obtained using I.M. Vinogradov's method of trigonometric sums [5], [6]:

$$ P ( x) = \ O ( x ^ {2/3} \mathop{\rm log} ^ {6} x). $$

There is a conjecture that

$$ P ( x) = \ O ( x ^ {1/2} \mathop{\rm log} ^ {2} x). $$

A generalization of the circle and sphere problems is the problem of estimating $ A _ {F} ( x) $, the number of lattice points in $ n $- dimensional ellipsoids

$$ F ( u _ {1} \dots u _ {n} ) = \ \sum _ {r, \nu = 1 } ^ { n } a _ {r \nu } u _ {r} u _ \nu \leq x,\ \ a _ {r \nu } = a _ {\nu r } , $$

where $ F $ is a positive-definite quadratic form [7].

References

[1] C.F. Gauss, , Werke , 2 , Göttingen (1863) pp. 269–291
[2] W. Sierpiński, Prace Mat. Fiz. , 17 (1906) pp. 77–118
[3] G.F. Voronoi, , Collected works , 1 , Kiev (1952) pp. 5 (In Russian)
[4] L.-K. Hua, "The method of trigonometric sums and its applications to number theory" , Selected papers , Springer (1983) pp. 124–135 (Translated from German)
[5] I.M. Vinogradov, "On the number of integer points in a ball" Izv. Akad. Nauk SSSR Ser. Mat. , 27 : 5 (1963) pp. 957–968 (In Russian)
[6] I.M. Vinogradov, "Basic variants of the method of trigonometric sums" , Moscow (1976) (In Russian)
[7] B. Novák, "Lattice points in more-dimensional ellipsoids" Trudy Mat. Inst. Akad. Nauk SSSR , 132 (1973) pp. 145–150 (In Russian)

Comments

The most recent estimate referred to above, $ \theta \leq 12/37 $, was obtained in 1963 by J. Chen [a1]. The circle problem is also known as the Gauss circle problem.

References

[a1] J. Chen, "The lattice-points in a circle" Sci. Sinica , 12 (1963) pp. 633–649
[a2] A.Z. Walfisz, "Gitterpunkte in mehrdimensionalen Kugeln" , PWN (1957)
How to Cite This Entry:
Circle problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Circle_problem&oldid=46345
This article was adapted from an original article by A.F. Lavrik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article