Difference between revisions of "Characteristic strip"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | c0217301.png | ||
+ | $#A+1 = 10 n = 0 | ||
+ | $#C+1 = 10 : ~/encyclopedia/old_files/data/C021/C.0201730 Characteristic strip | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''of a first-order partial differential equation'' | ''of a first-order partial differential equation'' | ||
A family | A family | ||
− | + | $$ | |
+ | x = x ( t),\ \ | ||
+ | u = y ( t),\ \ | ||
+ | u _ {x} = p ( t) | ||
+ | $$ | ||
− | of continuously-differentiable functions in an interval < | + | of continuously-differentiable functions in an interval $ \alpha < t < \beta $, |
+ | satisfying the equations | ||
− | + | $$ | |
+ | x ^ \prime ( t) = F _ {p} ,\ \ | ||
+ | y ^ \prime ( t) = pF _ {p} ,\ \ | ||
+ | p ^ \prime ( t) = - F _ {x} - p F _ {y} , | ||
+ | $$ | ||
where the multiplication of the vectors is the scalar product, and where | where the multiplication of the vectors is the scalar product, and where | ||
− | + | $$ \tag{* } | |
+ | F ( x, u , u _ {x} ) = 0 | ||
+ | $$ | ||
− | is a non-linear first-order partial differential equation in the unknown function | + | is a non-linear first-order partial differential equation in the unknown function $ u: \Omega \subseteq \mathbf R ^ {n} \rightarrow \mathbf R $. |
+ | Here $ u _ {x} = \mathop{\rm grad} u $, | ||
+ | $ F ( x, y, p): \Omega \times \mathbf R \times \mathbf R ^ {n} \rightarrow \mathbf R $, | ||
+ | $ x, p \in \mathbf R ^ {n} $, | ||
+ | $ y \in \mathbf R $, | ||
+ | $ n \in \mathbf N $. | ||
The importance of a characteristic strip consists in the fact that it is used in the study of, and in the search for, solutions of equation (*). | The importance of a characteristic strip consists in the fact that it is used in the study of, and in the search for, solutions of equation (*). | ||
Line 21: | Line 49: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''2. Partielle Differentialgleichungen erster Ordnung für die gesuchte Funktion''' , Akad. Verlagsgesell. (1944)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P. Hartman, "Ordinary differential equations" , Birkhäuser (1982)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''2. Partielle Differentialgleichungen erster Ordnung für die gesuchte Funktion''' , Akad. Verlagsgesell. (1944)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P. Hartman, "Ordinary differential equations" , Birkhäuser (1982)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 16:43, 4 June 2020
of a first-order partial differential equation
A family
$$ x = x ( t),\ \ u = y ( t),\ \ u _ {x} = p ( t) $$
of continuously-differentiable functions in an interval $ \alpha < t < \beta $, satisfying the equations
$$ x ^ \prime ( t) = F _ {p} ,\ \ y ^ \prime ( t) = pF _ {p} ,\ \ p ^ \prime ( t) = - F _ {x} - p F _ {y} , $$
where the multiplication of the vectors is the scalar product, and where
$$ \tag{* } F ( x, u , u _ {x} ) = 0 $$
is a non-linear first-order partial differential equation in the unknown function $ u: \Omega \subseteq \mathbf R ^ {n} \rightarrow \mathbf R $. Here $ u _ {x} = \mathop{\rm grad} u $, $ F ( x, y, p): \Omega \times \mathbf R \times \mathbf R ^ {n} \rightarrow \mathbf R $, $ x, p \in \mathbf R ^ {n} $, $ y \in \mathbf R $, $ n \in \mathbf N $.
The importance of a characteristic strip consists in the fact that it is used in the study of, and in the search for, solutions of equation (*).
See also Characteristic.
References
[1] | E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , 2. Partielle Differentialgleichungen erster Ordnung für die gesuchte Funktion , Akad. Verlagsgesell. (1944) |
[2] | P. Hartman, "Ordinary differential equations" , Birkhäuser (1982) |
Comments
A characteristic strip is sometimes called a bicharacteristic.
In the modern theory, the characteristic strips of a partial differential equation carry the wave front sets of solutions of a partial differential equation.
References
[a1] | R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1962) (Translated from German) |
[a2] | L.V. Hörmander, "The analysis of linear partial differential operators" , 1 , Springer (1983) |
Characteristic strip. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Characteristic_strip&oldid=46323