Namespaces
Variants
Actions

Difference between revisions of "Characteristic functional"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An analogue of the concept of a [[Characteristic function|characteristic function]]; it is used in the infinite-dimensional case. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c0216701.png" /> be a non-empty set, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c0216702.png" /> be a vector space of real-valued functions defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c0216703.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c0216704.png" /> be the smallest <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c0216705.png" />-algebra of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c0216706.png" /> relative to which all functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c0216707.png" /> are measurable. The characteristic functional of a probability measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c0216708.png" /> given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c0216709.png" /> is defined as the complex-valued functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167010.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167011.png" /> given by the equation
+
<!--
 +
c0216701.png
 +
$#A+1 = 72 n = 0
 +
$#C+1 = 72 : ~/encyclopedia/old_files/data/C021/C.0201670 Characteristic functional
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167012.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
From now on the most important and simplest case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167013.png" /> is a separable real Banach space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167014.png" /> is its topological dual <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167015.png" /> is studied. In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167016.png" /> coincides with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167017.png" />-algebra of Borel sets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167018.png" />. The concept of a characteristic functional for infinite-dimensional Banach spaces was introduced by A.N. Kolmogorov in [[#References|[1]]].
+
An analogue of the concept of a [[Characteristic function|characteristic function]]; it is used in the infinite-dimensional case. Let  $  \mathfrak X $
 +
be a non-empty set, let  $  \Gamma $
 +
be a vector space of real-valued functions defined on  $  \mathfrak X $
 +
and let  $  \widehat{C}  ( \mathfrak X , \Gamma ) $
 +
be the smallest  $  \sigma $-
 +
algebra of subsets of $  \mathfrak X $
 +
relative to which all functions in  $  \Gamma $
 +
are measurable. The characteristic functional of a probability measure  $  \mu $
 +
given on  $  \widehat{C}  ( \mathfrak X , \Gamma ) $
 +
is defined as the complex-valued functional $  \widehat \mu  $
 +
on  $  \Gamma $
 +
given by the equation
  
The characteristic functional of a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167019.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167020.png" /> is, by definition, that of its probability distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167022.png" />.
+
$$
 +
\widehat \mu  ( g)  = \
 +
\int\limits _ {\mathfrak X }
 +
\mathop{\rm exp} [ ig ( x)]  d \mu ( x),\ \
 +
g \in \Gamma .
 +
$$
 +
 
 +
From now on the most important and simplest case when  $  \mathfrak X $
 +
is a separable real Banach space and  $  \Gamma $
 +
is its topological dual  $  \mathfrak X  ^ {*} $
 +
is studied. In this case  $  \widehat{C}  ( \mathfrak X , \mathfrak X  ^ {*} ) $
 +
coincides with the  $  \sigma $-
 +
algebra of Borel sets of  $  \mathfrak X $.
 +
The concept of a characteristic functional for infinite-dimensional Banach spaces was introduced by A.N. Kolmogorov in [[#References|[1]]].
 +
 
 +
The characteristic functional of a random variable $  X $
 +
with values in $  \mathfrak X $
 +
is, by definition, that of its probability distribution $  \mu _ {X} ( B) = {\mathsf P} \{ X \in B \} $,  
 +
$  B \subset  \mathfrak X $.
  
 
Main properties of the characteristic functional:
 
Main properties of the characteristic functional:
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167024.png" /> is positive definite, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167025.png" /> for any finite set of complex numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167026.png" /> and elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167027.png" />;
+
1) $  \widehat \mu  ( 0) = 1 $
 +
and $  \widehat \mu  $
 +
is positive definite, i.e. $  \sum _ {k,l} \alpha _ {k} \overline \alpha \; _ {l} \widehat \mu  ( x _ {k}  ^ {*} - x _ {l}  ^ {*} ) \geq  0 $
 +
for any finite set of complex numbers $  \alpha _ {i} $
 +
and elements $  x _ {i}  ^ {*} \in \mathfrak X  ^ {*} $;
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167028.png" /> is continuous in the strong topology and sequentially continuous in the weak <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167029.png" /> topology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167030.png" />;
+
2) $  \widehat \mu  $
 +
is continuous in the strong topology and sequentially continuous in the weak $  * $
 +
topology of $  \mathfrak X  ^ {*} $;
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167031.png" />,
+
3) $  | \widehat \mu  ( x  ^ {*} ) | \leq  1 $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167032.png" /></td> </tr></table>
+
$$
 +
| \widehat \mu  ( x _ {1}  ^ {*} ) -
 +
\widehat \mu  ( x _ {2}  ^ {*} ) |  ^ {2}  \leq  \
 +
2 [ 1 -  \mathop{\rm Re}  \widehat \mu  ( x _ {1}  ^ {*} - x _ {2}  ^ {*} )],
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167033.png" />;
+
where $  x  ^ {*} , x _ {1}  ^ {*} , x _ {2}  ^ {*} \in \mathfrak X  ^ {*} $;
  
4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167034.png" />; in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167035.png" /> takes only real values (and is an even functional) if and only if the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167036.png" /> is symmetric, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167037.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167038.png" />;
+
4) $  \overline{ {\widehat \mu  ( x  ^ {*} ) }}\; = \widehat \mu  (- x  ^ {*} ) $;  
 +
in particular, $  \widehat \mu  $
 +
takes only real values (and is an even functional) if and only if the measure $  \mu $
 +
is symmetric, that is, $  \mu ( B) = \mu (- B) $,  
 +
where $  - B = \{ {x } : {- x \in B } \} $;
  
 
5) the characteristic functional determines the measure uniquely;
 
5) the characteristic functional determines the measure uniquely;
Line 25: Line 76:
 
6) the characteristic functional of the convolution of two probability measures (of the sum of two independent random variables) is the product of their characteristic functionals.
 
6) the characteristic functional of the convolution of two probability measures (of the sum of two independent random variables) is the product of their characteristic functionals.
  
In the finite-dimensional case the method of characteristic functionals is based on the theorem about the continuity of the correspondence between measures and their characteristic functionals, and on a theorem concerning the description of the class of characteristic functionals. In the infinite-dimensional case the direct analogues of these theorems do not hold. If a sequence of probability measures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167039.png" /> converges weakly to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167040.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167041.png" /> converges pointwise to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167042.png" />, and this convergence is uniform on bounded subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167043.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167044.png" /> is a weakly relatively-compact family of probability measures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167045.png" />, then the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167046.png" /> is equicontinuous in the strong topology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167047.png" />. The converse assertions only hold in the finite-dimensional case. However, the conditions of convergence and of weak relative compactness of families of probability measures can be expressed in terms of characteristic functionals (see [[#References|[2]]]). Furthermore, in contrast to the finite-dimensional case, not every positive-definite normalized (equal to 1 at the origin) continuous functional is a characteristic functional: continuity in the metric topology is not sufficient. A topology in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167048.png" /> is called sufficient, or necessary, if in this topology the continuity of a positive-definite normalized functional is sufficient, or necessary, for it to be the characteristic functional of some probability measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167049.png" />. A necessary and sufficient topology is said to be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167051.png" />-topology. A space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167052.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167054.png" />-space if there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167055.png" />-topology on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167056.png" />. A Hilbert space is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167057.png" />-space (see [[#References|[3]]]).
+
In the finite-dimensional case the method of characteristic functionals is based on the theorem about the continuity of the correspondence between measures and their characteristic functionals, and on a theorem concerning the description of the class of characteristic functionals. In the infinite-dimensional case the direct analogues of these theorems do not hold. If a sequence of probability measures $  ( \mu _ {n} ) $
 +
converges weakly to $  \mu $,  
 +
then $  ( \widehat \mu  _ {n} ) $
 +
converges pointwise to $  \widehat \mu  $,  
 +
and this convergence is uniform on bounded subsets of $  \mathfrak X  ^ {*} $;  
 +
if $  K $
 +
is a weakly relatively-compact family of probability measures on $  \mathfrak X $,  
 +
then the family $  \{ {\widehat \mu  } : {\mu \in K } \} $
 +
is equicontinuous in the strong topology of $  \mathfrak X  ^ {*} $.  
 +
The converse assertions only hold in the finite-dimensional case. However, the conditions of convergence and of weak relative compactness of families of probability measures can be expressed in terms of characteristic functionals (see [[#References|[2]]]). Furthermore, in contrast to the finite-dimensional case, not every positive-definite normalized (equal to 1 at the origin) continuous functional is a characteristic functional: continuity in the metric topology is not sufficient. A topology in $  \mathfrak X  ^ {*} $
 +
is called sufficient, or necessary, if in this topology the continuity of a positive-definite normalized functional is sufficient, or necessary, for it to be the characteristic functional of some probability measure on $  \mathfrak X $.  
 +
A necessary and sufficient topology is said to be an $  S $-
 +
topology. A space $  \mathfrak X $
 +
is called an $  S $-
 +
space if there is an $  S $-
 +
topology on $  \mathfrak X  ^ {*} $.  
 +
A Hilbert space is an $  S $-
 +
space (see [[#References|[3]]]).
  
The most important characteristic functionals are those of Gaussian measures. A measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167058.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167059.png" /> is called a centred Gaussian measure if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167060.png" />,
+
The most important characteristic functionals are those of Gaussian measures. A measure $  \mu $
 +
in $  \mathfrak X $
 +
is called a centred Gaussian measure if for all $  x  ^ {*} \in \mathfrak X  ^ {*} $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167061.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
\widehat \mu  ( x  ^ {*} )  = \
 +
\mathop{\rm exp} \left [ - {
 +
\frac{1}{2}
 +
}
 +
x  ^ {*} ( Rx  ^ {*} )
 +
\right ] ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167062.png" />, a bounded linear positive operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167063.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167064.png" />, is the covariance operator of the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167065.png" />, defined by the relation
+
where $  R $,  
 +
a bounded linear positive operator from $  \mathfrak X  ^ {*} $
 +
into $  \mathfrak X $,  
 +
is the covariance operator of the measure $  \mu $,  
 +
defined by the relation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167066.png" /></td> </tr></table>
+
$$
 +
x  ^ {*} ( Rx  ^ {*} )  = \
 +
\int\limits x  ^ {*} 2 ( x)  d \mu ( x)
 +
$$
  
(see [[#References|[4]]]). In contrast to the finite-dimensional case, not every functional of the form (*) is a characteristic functional: additional restrictions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167067.png" /> are needed, depending on the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167068.png" />. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167069.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167070.png" />, then an additional (necessary and sufficient) condition is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167071.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167072.png" /> is the matrix of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167073.png" /> in the natural basis (see [[#References|[5]]]). In particular, in a Hilbert space the additional condition is that the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021670/c02167074.png" /> be nuclear.
+
(see [[#References|[4]]]). In contrast to the finite-dimensional case, not every functional of the form (*) is a characteristic functional: additional restrictions on $  R $
 +
are needed, depending on the space $  \mathfrak X $.  
 +
For example, if $  \mathfrak X = l _ {p} $,  
 +
$  1 \leq  p < \infty $,  
 +
then an additional (necessary and sufficient) condition is $  \sum r _ {kk}  ^ {p/2} < + \infty $,  
 +
where $  \| r _ {ij} \| $
 +
is the matrix of the operator $  R $
 +
in the natural basis (see [[#References|[5]]]). In particular, in a Hilbert space the additional condition is that the operator $  R $
 +
be nuclear.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. Kolmogorov,  ''C.R. Acad. Sci. Paris'' , '''200'''  (1935)  pp. 1717–1718</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  Yu.V. Prokhorov,  "Convergence of random processes and limit theorems in probability theory"  ''Theory Probab. Appl.'' , '''1'''  (1956)  pp. 157–214  ''Teor. Veroyatnost. i Primen.'' , '''1''' :  2  (1956)  pp. 177–238</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.V. Sazonov,  "A remark on characteristic functionals"  ''Theory Probab. Appl.'' , '''3'''  (1958)  pp. 188–192  ''Teor. Veroyatnost. i Primen.'' , '''3''' :  2  (1958)  pp. 201–205</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.N. Vakhania,  V.I. Tarieladze,  S.A. Chobanyan,  "Probability distributions on Banach spaces" , Reidel  (1987)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N.N. Vakhania,  "Sur les répartitions de probabilités dans les espaces de suites numériques"  ''C.R. Acad. Sci. Paris'' , '''260'''  (1965)  pp. 1560–1562</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. Kolmogorov,  ''C.R. Acad. Sci. Paris'' , '''200'''  (1935)  pp. 1717–1718</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  Yu.V. Prokhorov,  "Convergence of random processes and limit theorems in probability theory"  ''Theory Probab. Appl.'' , '''1'''  (1956)  pp. 157–214  ''Teor. Veroyatnost. i Primen.'' , '''1''' :  2  (1956)  pp. 177–238</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.V. Sazonov,  "A remark on characteristic functionals"  ''Theory Probab. Appl.'' , '''3'''  (1958)  pp. 188–192  ''Teor. Veroyatnost. i Primen.'' , '''3''' :  2  (1958)  pp. 201–205</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.N. Vakhania,  V.I. Tarieladze,  S.A. Chobanyan,  "Probability distributions on Banach spaces" , Reidel  (1987)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N.N. Vakhania,  "Sur les répartitions de probabilités dans les espaces de suites numériques"  ''C.R. Acad. Sci. Paris'' , '''260'''  (1965)  pp. 1560–1562</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N.N. Vakhania,  "Probability distributions on linear spaces" , North-Holland  (1981)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N.N. Vakhania,  "Probability distributions on linear spaces" , North-Holland  (1981)  (Translated from Russian)</TD></TR></table>

Latest revision as of 16:43, 4 June 2020


An analogue of the concept of a characteristic function; it is used in the infinite-dimensional case. Let $ \mathfrak X $ be a non-empty set, let $ \Gamma $ be a vector space of real-valued functions defined on $ \mathfrak X $ and let $ \widehat{C} ( \mathfrak X , \Gamma ) $ be the smallest $ \sigma $- algebra of subsets of $ \mathfrak X $ relative to which all functions in $ \Gamma $ are measurable. The characteristic functional of a probability measure $ \mu $ given on $ \widehat{C} ( \mathfrak X , \Gamma ) $ is defined as the complex-valued functional $ \widehat \mu $ on $ \Gamma $ given by the equation

$$ \widehat \mu ( g) = \ \int\limits _ {\mathfrak X } \mathop{\rm exp} [ ig ( x)] d \mu ( x),\ \ g \in \Gamma . $$

From now on the most important and simplest case when $ \mathfrak X $ is a separable real Banach space and $ \Gamma $ is its topological dual $ \mathfrak X ^ {*} $ is studied. In this case $ \widehat{C} ( \mathfrak X , \mathfrak X ^ {*} ) $ coincides with the $ \sigma $- algebra of Borel sets of $ \mathfrak X $. The concept of a characteristic functional for infinite-dimensional Banach spaces was introduced by A.N. Kolmogorov in [1].

The characteristic functional of a random variable $ X $ with values in $ \mathfrak X $ is, by definition, that of its probability distribution $ \mu _ {X} ( B) = {\mathsf P} \{ X \in B \} $, $ B \subset \mathfrak X $.

Main properties of the characteristic functional:

1) $ \widehat \mu ( 0) = 1 $ and $ \widehat \mu $ is positive definite, i.e. $ \sum _ {k,l} \alpha _ {k} \overline \alpha \; _ {l} \widehat \mu ( x _ {k} ^ {*} - x _ {l} ^ {*} ) \geq 0 $ for any finite set of complex numbers $ \alpha _ {i} $ and elements $ x _ {i} ^ {*} \in \mathfrak X ^ {*} $;

2) $ \widehat \mu $ is continuous in the strong topology and sequentially continuous in the weak $ * $ topology of $ \mathfrak X ^ {*} $;

3) $ | \widehat \mu ( x ^ {*} ) | \leq 1 $,

$$ | \widehat \mu ( x _ {1} ^ {*} ) - \widehat \mu ( x _ {2} ^ {*} ) | ^ {2} \leq \ 2 [ 1 - \mathop{\rm Re} \widehat \mu ( x _ {1} ^ {*} - x _ {2} ^ {*} )], $$

where $ x ^ {*} , x _ {1} ^ {*} , x _ {2} ^ {*} \in \mathfrak X ^ {*} $;

4) $ \overline{ {\widehat \mu ( x ^ {*} ) }}\; = \widehat \mu (- x ^ {*} ) $; in particular, $ \widehat \mu $ takes only real values (and is an even functional) if and only if the measure $ \mu $ is symmetric, that is, $ \mu ( B) = \mu (- B) $, where $ - B = \{ {x } : {- x \in B } \} $;

5) the characteristic functional determines the measure uniquely;

6) the characteristic functional of the convolution of two probability measures (of the sum of two independent random variables) is the product of their characteristic functionals.

In the finite-dimensional case the method of characteristic functionals is based on the theorem about the continuity of the correspondence between measures and their characteristic functionals, and on a theorem concerning the description of the class of characteristic functionals. In the infinite-dimensional case the direct analogues of these theorems do not hold. If a sequence of probability measures $ ( \mu _ {n} ) $ converges weakly to $ \mu $, then $ ( \widehat \mu _ {n} ) $ converges pointwise to $ \widehat \mu $, and this convergence is uniform on bounded subsets of $ \mathfrak X ^ {*} $; if $ K $ is a weakly relatively-compact family of probability measures on $ \mathfrak X $, then the family $ \{ {\widehat \mu } : {\mu \in K } \} $ is equicontinuous in the strong topology of $ \mathfrak X ^ {*} $. The converse assertions only hold in the finite-dimensional case. However, the conditions of convergence and of weak relative compactness of families of probability measures can be expressed in terms of characteristic functionals (see [2]). Furthermore, in contrast to the finite-dimensional case, not every positive-definite normalized (equal to 1 at the origin) continuous functional is a characteristic functional: continuity in the metric topology is not sufficient. A topology in $ \mathfrak X ^ {*} $ is called sufficient, or necessary, if in this topology the continuity of a positive-definite normalized functional is sufficient, or necessary, for it to be the characteristic functional of some probability measure on $ \mathfrak X $. A necessary and sufficient topology is said to be an $ S $- topology. A space $ \mathfrak X $ is called an $ S $- space if there is an $ S $- topology on $ \mathfrak X ^ {*} $. A Hilbert space is an $ S $- space (see [3]).

The most important characteristic functionals are those of Gaussian measures. A measure $ \mu $ in $ \mathfrak X $ is called a centred Gaussian measure if for all $ x ^ {*} \in \mathfrak X ^ {*} $,

$$ \tag{* } \widehat \mu ( x ^ {*} ) = \ \mathop{\rm exp} \left [ - { \frac{1}{2} } x ^ {*} ( Rx ^ {*} ) \right ] , $$

where $ R $, a bounded linear positive operator from $ \mathfrak X ^ {*} $ into $ \mathfrak X $, is the covariance operator of the measure $ \mu $, defined by the relation

$$ x ^ {*} ( Rx ^ {*} ) = \ \int\limits x ^ {*} 2 ( x) d \mu ( x) $$

(see [4]). In contrast to the finite-dimensional case, not every functional of the form (*) is a characteristic functional: additional restrictions on $ R $ are needed, depending on the space $ \mathfrak X $. For example, if $ \mathfrak X = l _ {p} $, $ 1 \leq p < \infty $, then an additional (necessary and sufficient) condition is $ \sum r _ {kk} ^ {p/2} < + \infty $, where $ \| r _ {ij} \| $ is the matrix of the operator $ R $ in the natural basis (see [5]). In particular, in a Hilbert space the additional condition is that the operator $ R $ be nuclear.

References

[1] A.N. Kolmogorov, C.R. Acad. Sci. Paris , 200 (1935) pp. 1717–1718
[2] Yu.V. Prokhorov, "Convergence of random processes and limit theorems in probability theory" Theory Probab. Appl. , 1 (1956) pp. 157–214 Teor. Veroyatnost. i Primen. , 1 : 2 (1956) pp. 177–238
[3] V.V. Sazonov, "A remark on characteristic functionals" Theory Probab. Appl. , 3 (1958) pp. 188–192 Teor. Veroyatnost. i Primen. , 3 : 2 (1958) pp. 201–205
[4] N.N. Vakhania, V.I. Tarieladze, S.A. Chobanyan, "Probability distributions on Banach spaces" , Reidel (1987) (Translated from Russian)
[5] N.N. Vakhania, "Sur les répartitions de probabilités dans les espaces de suites numériques" C.R. Acad. Sci. Paris , 260 (1965) pp. 1560–1562

Comments

References

[a1] N.N. Vakhania, "Probability distributions on linear spaces" , North-Holland (1981) (Translated from Russian)
How to Cite This Entry:
Characteristic functional. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Characteristic_functional&oldid=46321
This article was adapted from an original article by N.N. Vakhania (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article