Difference between revisions of "Cayley-Dickson algebra"
Ulf Rehmann (talk | contribs) m (moved Cayley–Dickson algebra to Cayley-Dickson algebra: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0210401.png | ||
+ | $#A+1 = 133 n = 0 | ||
+ | $#C+1 = 133 : ~/encyclopedia/old_files/data/C021/C.0201040 Cayley\ANDDickson algebra | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | An alternative $ 8 $- | ||
+ | dimensional algebra, derived from the algebra of generalized quaternions via the Cayley–Dickson process (cf. [[Quaternion|Quaternion]] and [[Alternative rings and algebras|Alternative rings and algebras]]). The latter starts out from a given algebra $ A $ | ||
+ | to construct a new algebra $ A _ {1} $( | ||
+ | of twice the dimension of $ A $) | ||
+ | and is a generalization of the doubling process (see [[Hypercomplex number|Hypercomplex number]]). Namely, let $ A $ | ||
+ | be an algebra with a unit 1 over a field $ F $, | ||
+ | let $ \delta $ | ||
+ | be some non-zero element of $ F $, | ||
+ | and let $ x \rightarrow x ^ {*} $ | ||
+ | be an $ F $- | ||
+ | linear mapping which is an involution, and such that | ||
+ | |||
+ | $$ | ||
+ | x + x ^ {*} = \ | ||
+ | \mathop{\rm tr} ( x) \in F,\ \ | ||
+ | xx ^ {*} = \ | ||
+ | n ( x) \in F. | ||
+ | $$ | ||
The formula | The formula | ||
− | + | $$ | |
+ | ( a _ {1} , a _ {2} ) | ||
+ | ( b _ {1} , b _ {2} ) = \ | ||
+ | ( a _ {1} b _ {1} - | ||
+ | \delta b _ {2} a _ {2} ^ {*} ,\ | ||
+ | a _ {1} ^ {*} b _ {2} + | ||
+ | b _ {1} a _ {2} ) | ||
+ | $$ | ||
− | now defines a multiplication operation on the direct sum of linear spaces | + | now defines a multiplication operation on the direct sum of linear spaces $ A _ {1} = A \oplus A $, |
+ | relative to which $ A _ {1} $ | ||
+ | is an algebra. The algebra $ A $ | ||
+ | may be imbedded in $ A _ {1} $ | ||
+ | as a subalgebra: $ x \rightarrow ( x, 0) $, | ||
+ | and the involution $ * $ | ||
+ | extends to an involution in $ A _ {1} $: | ||
− | + | $$ | |
+ | ( a _ {1} , a _ {2} ) ^ {*} = \ | ||
+ | ( a _ {1} ^ {*} , - a _ {2} ). | ||
+ | $$ | ||
Moreover, | Moreover, | ||
− | + | $$ | |
+ | \mathop{\rm tr} ( a _ {1} , a _ {2} ) = \ | ||
+ | \mathop{\rm tr} ( a _ {1} ),\ \ | ||
+ | n ( a _ {1} , a _ {2} ) = \ | ||
+ | n ( a _ {1} ) + \delta n ( a _ {2} ). | ||
+ | $$ | ||
− | The extension of | + | The extension of $ A $ |
+ | to $ A _ {1} $ | ||
+ | can be repeated resulting in an ascending chain of algebras $ A \subset A _ {1} \subset A _ {2} \subset \dots $; | ||
+ | the parameter $ \delta $ | ||
+ | need not be the same at each stage. If the Cayley–Dickson process is begun with an algebra $ A $ | ||
+ | with basis $ \{ 1, u \} $, | ||
+ | multiplication table | ||
− | + | $$ | |
+ | u ^ {2} = u + \alpha ,\ \ | ||
+ | \alpha \in F,\ \ | ||
+ | 4 \alpha + 1 \neq 0, | ||
+ | $$ | ||
− | and involution | + | and involution $ 1 ^ {*} = 1 $, |
+ | $ u ^ {*} = 1 - u $, | ||
+ | the first application of the process yields an algebra $ A _ {1} $ | ||
+ | of generalized quaternions (an associative algebra of dimension 4), and the second — an $ 8 $- | ||
+ | dimensional algebra, known as a Cayley–Dickson algebra. | ||
− | Any Cayley–Dickson algebra is an alternative, but non-associative, central simple algebra over | + | Any Cayley–Dickson algebra is an alternative, but non-associative, central simple algebra over $ F $; |
+ | conversely, a simple alternative ring is either associative or a Cayley–Dickson algebra over its centre. The quadratic form $ n ( x) $ | ||
+ | in 8 variables defined on a Cayley–Dickson algebra (the 8 variables correspond to the basis elements) has the multiplicative property: | ||
− | + | $$ | |
+ | n ( xy) = \ | ||
+ | n ( x) \cdot n ( y). | ||
+ | $$ | ||
− | This establishes a connection between Cayley–Dickson algebras and the existence problem for compositions of quadratic forms. A Cayley–Dickson algebra is a division algebra if and only if the quadratic form | + | This establishes a connection between Cayley–Dickson algebras and the existence problem for compositions of quadratic forms. A Cayley–Dickson algebra is a division algebra if and only if the quadratic form $ n ( x) $( |
+ | the norm of $ x $) | ||
+ | does not represent the zero in $ F $. | ||
+ | If $ F $ | ||
+ | is a field of characteristic other than 2, a Cayley–Dickson algebra has a basis $ \{ 1, u _ {1} \dots u _ {7} \} $ | ||
+ | with the following multiplication table:<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"></td> <td colname="2" style="background-color:white;" colspan="1"> $ u _ {1} $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1"> $ u _ {2} $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1"> $ u _ {3} $ | ||
+ | </td> <td colname="5" style="background-color:white;" colspan="1"> $ u _ {4} $ | ||
+ | </td> <td colname="6" style="background-color:white;" colspan="1"> $ u _ {5} $ | ||
+ | </td> <td colname="7" style="background-color:white;" colspan="1"> $ u _ {6} $ | ||
+ | </td> <td colname="8" style="background-color:white;" colspan="1"> $ u _ {7} $ | ||
+ | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ u _ {1} $ | ||
+ | </td> <td colname="2" style="background-color:white;" colspan="1"> $ -\alpha $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1"> $ u _ {3} $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1"> $ -\alpha u _ {2} $ | ||
+ | </td> <td colname="5" style="background-color:white;" colspan="1"> $ - u _ {5} $ | ||
+ | </td> <td colname="6" style="background-color:white;" colspan="1"> $ \alpha u _ {4} $ | ||
+ | </td> <td colname="7" style="background-color:white;" colspan="1"> $ - u _ {7} $ | ||
+ | </td> <td colname="8" style="background-color:white;" colspan="1"> $ \alpha u _ {6} $ | ||
+ | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ u _ {2} $ | ||
+ | </td> <td colname="2" style="background-color:white;" colspan="1"> $ - u _ {3} $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1"> $ -\beta $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1"> $ \beta u _ {1} $ | ||
+ | </td> <td colname="5" style="background-color:white;" colspan="1"> $ - u _ {6} $ | ||
+ | </td> <td colname="6" style="background-color:white;" colspan="1"> $ u _ {7} $ | ||
+ | </td> <td colname="7" style="background-color:white;" colspan="1"> $ \beta u _ {4} $ | ||
+ | </td> <td colname="8" style="background-color:white;" colspan="1"> $ -\beta u _ {5} $ | ||
+ | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ u _ {3} $ | ||
+ | </td> <td colname="2" style="background-color:white;" colspan="1"> $ \alpha u _ {2} $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1"> $ -\beta u _ {1} $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1"> $ -\alpha\beta $ | ||
+ | </td> <td colname="5" style="background-color:white;" colspan="1"> $ - u _ {7} $ | ||
+ | </td> <td colname="6" style="background-color:white;" colspan="1"> $ -\alpha u _ {6} $ | ||
+ | </td> <td colname="7" style="background-color:white;" colspan="1"> $ \beta u _ {5} $ | ||
+ | </td> <td colname="8" style="background-color:white;" colspan="1"> $ \alpha\beta u _ {4} $ | ||
+ | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ u _ {4} $ | ||
+ | </td> <td colname="2" style="background-color:white;" colspan="1"> $ u _ {5} $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1"> $ u _ {6} $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1"> $ u _ {7} $ | ||
+ | </td> <td colname="5" style="background-color:white;" colspan="1"> $ -\gamma $ | ||
+ | </td> <td colname="6" style="background-color:white;" colspan="1"> $ -\gamma u _ {1} $ | ||
+ | </td> <td colname="7" style="background-color:white;" colspan="1"> $ -\gamma u _ {2} $ | ||
+ | </td> <td colname="8" style="background-color:white;" colspan="1"> $ -\gamma u _ {3} $ | ||
+ | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ u _ {5} $ | ||
+ | </td> <td colname="2" style="background-color:white;" colspan="1"> $ -\alpha u _ {4} $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1"> $ - u _ {7} $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1"> $ \alpha u _ {6} $ | ||
+ | </td> <td colname="5" style="background-color:white;" colspan="1"> $ \gamma u _ {1} $ | ||
+ | </td> <td colname="6" style="background-color:white;" colspan="1"> $ -\alpha\gamma $ | ||
+ | </td> <td colname="7" style="background-color:white;" colspan="1"> $ -\alpha u _ {3} $ | ||
+ | </td> <td colname="8" style="background-color:white;" colspan="1"> $ \alpha\gamma u _ {4} $ | ||
+ | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ u _ {6} $ | ||
+ | </td> <td colname="2" style="background-color:white;" colspan="1"> $ u _ {7} $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1"> $ -\beta u _ {4} $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1"> $ -\beta u _ {5} $ | ||
+ | </td> <td colname="5" style="background-color:white;" colspan="1"> $ \gamma u _ {2} $ | ||
+ | </td> <td colname="6" style="background-color:white;" colspan="1"> $ \gamma u _ {3} $ | ||
+ | </td> <td colname="7" style="background-color:white;" colspan="1"> $ -\beta\gamma $ | ||
+ | </td> <td colname="8" style="background-color:white;" colspan="1"> $ -\beta\gamma u _ {1} $ | ||
+ | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ u _ {7} $ | ||
+ | </td> <td colname="2" style="background-color:white;" colspan="1"> $ -\alpha u _ {6} $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1"> $ \beta u _ {5} $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1"> $ -\alpha \beta u _ {4} $ | ||
+ | </td> <td colname="5" style="background-color:white;" colspan="1"> $ \gamma u _ {3} $ | ||
+ | </td> <td colname="6" style="background-color:white;" colspan="1"> $ -\alpha \gamma u _ {2} $ | ||
+ | </td> <td colname="7" style="background-color:white;" colspan="1"> $ \beta\gamma u _ {1} $ | ||
+ | </td> <td colname="8" style="background-color:white;" colspan="1"> $ -\alpha\beta\gamma $ | ||
+ | </td> </tr> </tbody> </table> | ||
</td></tr> </table> | </td></tr> </table> | ||
− | where | + | where $ \alpha , \beta , \gamma \in F $, |
+ | $ \alpha \beta \gamma \neq 0 $, | ||
+ | and the involution is defined by the conditions | ||
+ | |||
+ | $$ | ||
+ | 1 ^ {*} = 1,\ \ | ||
+ | u _ {i} ^ {*} = - u _ {i} ,\ \ | ||
+ | i = 1 \dots 7. | ||
+ | $$ | ||
+ | |||
+ | This algebra is denoted by $ A ( \alpha , \beta , \gamma ) $. | ||
+ | The algebras $ A ( \alpha , \beta , \gamma ) $ | ||
+ | and $ A ( \alpha ^ \prime , \beta ^ \prime , \gamma ^ \prime ) $ | ||
+ | are isomorphic if and only if their quadratic forms $ n ( x) $ | ||
+ | are equivalent. If $ n ( x) $ | ||
+ | represents zero, the corresponding Cayley–Dickson algebra is isomorphic to $ A (- 1, 1, 1) $, | ||
+ | which is known as the Cayley splitting algebra, or the vector-matrix algebra. Its elements may be expressed as matrices | ||
+ | |||
+ | $$ | ||
+ | \left \| | ||
+ | |||
+ | \begin{array}{cc} | ||
+ | \alpha & a \\ | ||
+ | b &\beta \\ | ||
+ | \end{array} | ||
+ | \ | ||
+ | \right \| , | ||
+ | $$ | ||
− | + | where $ \alpha , \beta \in F $, | |
+ | $ a, b \in V $, | ||
+ | with $ V $ | ||
+ | a three-dimensional space over $ F $ | ||
+ | with the usual definition of the scalar product $ \langle a, b \rangle $ | ||
+ | and vector product $ a \times b $. | ||
+ | Matrix multiplication is defined by | ||
− | + | $$ | |
+ | \left \| | ||
− | + | \begin{array}{cc} | |
+ | \alpha & a \\ | ||
+ | b &\beta \\ | ||
+ | \end{array} | ||
+ | \ | ||
+ | \right \| \ | ||
+ | \left \| | ||
− | + | \begin{array}{cc} | |
+ | \gamma & c \\ | ||
+ | d &\delta \\ | ||
+ | \end{array} | ||
+ | \ | ||
+ | \right \| = \ | ||
+ | \left \| | ||
− | + | \begin{array}{cc} | |
+ | \alpha \gamma - \langle a, d \rangle &\alpha c + \delta a + b \times d \\ | ||
+ | \gamma b + \beta d + a \times c &\beta \delta - \langle b, c \rangle \\ | ||
+ | \end{array} | ||
+ | \ | ||
+ | \right \| . | ||
+ | $$ | ||
− | If | + | If $ F = \mathbf R $ |
+ | is the real field, then $ A ( 1, 1, 1) $ | ||
+ | is the algebra of [[Cayley numbers|Cayley numbers]] (a division algebra). Any Cayley–Dickson algebra over $ \mathbf R $ | ||
+ | is isomorphic to either $ A ( 1, 1, 1) $ | ||
+ | or $ A (- 1, 1, 1) $. | ||
The construction of Cayley–Dickson algebras over an arbitrary field is due to L.E. Dickson, who also investigated their fundamental properties (see [[#References|[1]]], [[#References|[2]]]). | The construction of Cayley–Dickson algebras over an arbitrary field is due to L.E. Dickson, who also investigated their fundamental properties (see [[#References|[1]]], [[#References|[2]]]). | ||
− | Let | + | Let $ A $ |
+ | be an alternative ring whose associative-commutative centre $ C $ | ||
+ | is distinct from zero and does not contain zero divisors; let $ F $ | ||
+ | be the field of fractions of $ C $. | ||
+ | Then there is a natural imbedding $ A \rightarrow A \otimes _ {C} F $. | ||
+ | If $ A \otimes _ {C} F $ | ||
+ | is a Cayley–Dickson algebra over $ F $, | ||
+ | then $ A $ | ||
+ | is known as a Cayley–Dickson ring. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.E. Dickson, "Linear algebras" , Cambridge Univ. Press (1930)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.D. Schafer, "An introduction to nonassociative algebras" , Acad. Press (1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K.A. Zhevlakov, A.M. Slin'ko, I.P. Shestakov, A.I. Shirshov, "Rings that are nearly associative" , Acad. Press (1982) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.E. Dickson, "Linear algebras" , Cambridge Univ. Press (1930)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.D. Schafer, "An introduction to nonassociative algebras" , Acad. Press (1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K.A. Zhevlakov, A.M. Slin'ko, I.P. Shestakov, A.I. Shirshov, "Rings that are nearly associative" , Acad. Press (1982) (Translated from Russian)</TD></TR></table> |
Latest revision as of 16:43, 4 June 2020
An alternative $ 8 $-
dimensional algebra, derived from the algebra of generalized quaternions via the Cayley–Dickson process (cf. Quaternion and Alternative rings and algebras). The latter starts out from a given algebra $ A $
to construct a new algebra $ A _ {1} $(
of twice the dimension of $ A $)
and is a generalization of the doubling process (see Hypercomplex number). Namely, let $ A $
be an algebra with a unit 1 over a field $ F $,
let $ \delta $
be some non-zero element of $ F $,
and let $ x \rightarrow x ^ {*} $
be an $ F $-
linear mapping which is an involution, and such that
$$ x + x ^ {*} = \ \mathop{\rm tr} ( x) \in F,\ \ xx ^ {*} = \ n ( x) \in F. $$
The formula
$$ ( a _ {1} , a _ {2} ) ( b _ {1} , b _ {2} ) = \ ( a _ {1} b _ {1} - \delta b _ {2} a _ {2} ^ {*} ,\ a _ {1} ^ {*} b _ {2} + b _ {1} a _ {2} ) $$
now defines a multiplication operation on the direct sum of linear spaces $ A _ {1} = A \oplus A $, relative to which $ A _ {1} $ is an algebra. The algebra $ A $ may be imbedded in $ A _ {1} $ as a subalgebra: $ x \rightarrow ( x, 0) $, and the involution $ * $ extends to an involution in $ A _ {1} $:
$$ ( a _ {1} , a _ {2} ) ^ {*} = \ ( a _ {1} ^ {*} , - a _ {2} ). $$
Moreover,
$$ \mathop{\rm tr} ( a _ {1} , a _ {2} ) = \ \mathop{\rm tr} ( a _ {1} ),\ \ n ( a _ {1} , a _ {2} ) = \ n ( a _ {1} ) + \delta n ( a _ {2} ). $$
The extension of $ A $ to $ A _ {1} $ can be repeated resulting in an ascending chain of algebras $ A \subset A _ {1} \subset A _ {2} \subset \dots $; the parameter $ \delta $ need not be the same at each stage. If the Cayley–Dickson process is begun with an algebra $ A $ with basis $ \{ 1, u \} $, multiplication table
$$ u ^ {2} = u + \alpha ,\ \ \alpha \in F,\ \ 4 \alpha + 1 \neq 0, $$
and involution $ 1 ^ {*} = 1 $, $ u ^ {*} = 1 - u $, the first application of the process yields an algebra $ A _ {1} $ of generalized quaternions (an associative algebra of dimension 4), and the second — an $ 8 $- dimensional algebra, known as a Cayley–Dickson algebra.
Any Cayley–Dickson algebra is an alternative, but non-associative, central simple algebra over $ F $; conversely, a simple alternative ring is either associative or a Cayley–Dickson algebra over its centre. The quadratic form $ n ( x) $ in 8 variables defined on a Cayley–Dickson algebra (the 8 variables correspond to the basis elements) has the multiplicative property:
$$ n ( xy) = \ n ( x) \cdot n ( y). $$
This establishes a connection between Cayley–Dickson algebras and the existence problem for compositions of quadratic forms. A Cayley–Dickson algebra is a division algebra if and only if the quadratic form $ n ( x) $( the norm of $ x $) does not represent the zero in $ F $. If $ F $ is a field of characteristic other than 2, a Cayley–Dickson algebra has a basis $ \{ 1, u _ {1} \dots u _ {7} \} $
with the following multiplication table:
<tbody> </tbody>
|
where $ \alpha , \beta , \gamma \in F $, $ \alpha \beta \gamma \neq 0 $, and the involution is defined by the conditions
$$ 1 ^ {*} = 1,\ \ u _ {i} ^ {*} = - u _ {i} ,\ \ i = 1 \dots 7. $$
This algebra is denoted by $ A ( \alpha , \beta , \gamma ) $. The algebras $ A ( \alpha , \beta , \gamma ) $ and $ A ( \alpha ^ \prime , \beta ^ \prime , \gamma ^ \prime ) $ are isomorphic if and only if their quadratic forms $ n ( x) $ are equivalent. If $ n ( x) $ represents zero, the corresponding Cayley–Dickson algebra is isomorphic to $ A (- 1, 1, 1) $, which is known as the Cayley splitting algebra, or the vector-matrix algebra. Its elements may be expressed as matrices
$$ \left \| \begin{array}{cc} \alpha & a \\ b &\beta \\ \end{array} \ \right \| , $$
where $ \alpha , \beta \in F $, $ a, b \in V $, with $ V $ a three-dimensional space over $ F $ with the usual definition of the scalar product $ \langle a, b \rangle $ and vector product $ a \times b $. Matrix multiplication is defined by
$$ \left \| \begin{array}{cc} \alpha & a \\ b &\beta \\ \end{array} \ \right \| \ \left \| \begin{array}{cc} \gamma & c \\ d &\delta \\ \end{array} \ \right \| = \ \left \| \begin{array}{cc} \alpha \gamma - \langle a, d \rangle &\alpha c + \delta a + b \times d \\ \gamma b + \beta d + a \times c &\beta \delta - \langle b, c \rangle \\ \end{array} \ \right \| . $$
If $ F = \mathbf R $ is the real field, then $ A ( 1, 1, 1) $ is the algebra of Cayley numbers (a division algebra). Any Cayley–Dickson algebra over $ \mathbf R $ is isomorphic to either $ A ( 1, 1, 1) $ or $ A (- 1, 1, 1) $.
The construction of Cayley–Dickson algebras over an arbitrary field is due to L.E. Dickson, who also investigated their fundamental properties (see [1], [2]).
Let $ A $ be an alternative ring whose associative-commutative centre $ C $ is distinct from zero and does not contain zero divisors; let $ F $ be the field of fractions of $ C $. Then there is a natural imbedding $ A \rightarrow A \otimes _ {C} F $. If $ A \otimes _ {C} F $ is a Cayley–Dickson algebra over $ F $, then $ A $ is known as a Cayley–Dickson ring.
References
[1] | L.E. Dickson, "Linear algebras" , Cambridge Univ. Press (1930) |
[2] | R.D. Schafer, "An introduction to nonassociative algebras" , Acad. Press (1966) |
[3] | K.A. Zhevlakov, A.M. Slin'ko, I.P. Shestakov, A.I. Shirshov, "Rings that are nearly associative" , Acad. Press (1982) (Translated from Russian) |
Cayley-Dickson algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cayley-Dickson_algebra&oldid=46286