Difference between revisions of "Casimir element"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | c0206901.png | ||
| + | $#A+1 = 43 n = 0 | ||
| + | $#C+1 = 43 : ~/encyclopedia/old_files/data/C020/C.0200690 Casimir element, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''Casimir operator'' | ''Casimir operator'' | ||
A central element of special form in the universal enveloping algebra of a semi-simple Lie algebra. Such operators were first introduced, for a particular case, by H. Casimir [[#References|[1]]]. | A central element of special form in the universal enveloping algebra of a semi-simple Lie algebra. Such operators were first introduced, for a particular case, by H. Casimir [[#References|[1]]]. | ||
| − | Let | + | Let $ \mathfrak g $ |
| + | be a semi-simple finite-dimensional Lie algebra over a field of characteristic $ 0 $, | ||
| + | and let $ B $ | ||
| + | be an invariant symmetric bilinear form on $ \mathfrak g $( | ||
| + | that is, $ B ( [ x , y ] , z ) =B ( x , [ y , z ] ) $ | ||
| + | for all $ x , y , z \in \mathfrak g $) | ||
| + | which is non-degenerate on a Cartan subalgebra $ \mathfrak g _ {0} \subset \mathfrak g $. | ||
| + | Then a Casimir element of the Lie algebra $ \mathfrak g $ | ||
| + | with respect to the form $ B $ | ||
| + | is an element of the universal enveloping algebra $ U ( \mathfrak g ) $ | ||
| + | that is representable in the form | ||
| − | + | $$ | |
| + | b = \sum _ { i=1 } ^ { k } | ||
| + | e _ {i} f _ {i} . | ||
| + | $$ | ||
| − | Here | + | Here $ \{ e _ {i} \} $, |
| + | $ \{ f _ {i} \} $ | ||
| + | are dual bases of $ \mathfrak g _ {0} $ | ||
| + | with respect to $ B $, | ||
| + | that is, $ B ( e _ {i} , f _ {i} ) = \delta _ {ij} $, | ||
| + | $ i = 1 \dots k $, | ||
| + | where $ \delta _ {ij} $ | ||
| + | is the Kronecker symbol and $ k = \mathop{\rm dim} \mathfrak g _ {0} $. | ||
| + | The element $ b $ | ||
| + | does not depend on the choice of the dual bases in $ \mathfrak g _ {0} $ | ||
| + | and belongs to the centre of $ U ( \mathfrak g _ {0} ) $. | ||
| + | If $ \mathfrak g $ | ||
| + | is a simple algebra, then a Casimir element of $ \mathfrak g $ | ||
| + | defined by the [[Killing form|Killing form]] $ B $ | ||
| + | is the unique (up to a scalar multiplier) central element in $ U ( \mathfrak g ) $ | ||
| + | that is representable as a homogeneous quadratic polynomial in the elements of $ \mathfrak g $. | ||
| − | Every linear representation | + | Every linear representation $ \phi $ |
| + | of a semi-simple algebra $ \mathfrak g $ | ||
| + | in a finite-dimensional space $ V $ | ||
| + | defines an invariant symmetric bilinear form | ||
| − | + | $$ | |
| + | B _ \phi ( x , y ) = \ | ||
| + | \mathop{\rm Tr} ( \phi (x) \phi (y) ) | ||
| + | $$ | ||
| − | on | + | on $ \mathfrak g $, |
| + | which is non-degenerate on the subalgebra $ \mathfrak g _ {0} \subset \mathfrak g $ | ||
| + | complementary to $ \mathop{\rm ker} \phi $, | ||
| + | and therefore also defines some Casimir element $ b _ \phi \in U ( \mathfrak g ) $. | ||
| + | If $ \phi $ | ||
| + | is an irreducible representation, then the extension of $ \phi $ | ||
| + | onto $ U ( \mathfrak g ) $ | ||
| + | takes $ b _ \phi $ | ||
| + | into $ ( k / \mathop{\rm dim} V ) E $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Casimir, B.L. van der Waerden, "Algebraischer Beweis der Vollständigen Reduzibilität der Darstellungen halbeinfacher Liescher Gruppen" ''Math. Ann.'' , '''111''' (1935) pp. 1–2</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley (1975) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> J. Dixmier, "Enveloping algebras" , North-Holland (1977) (Translated from French)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Casimir, B.L. van der Waerden, "Algebraischer Beweis der Vollständigen Reduzibilität der Darstellungen halbeinfacher Liescher Gruppen" ''Math. Ann.'' , '''111''' (1935) pp. 1–2</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley (1975) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> J. Dixmier, "Enveloping algebras" , North-Holland (1977) (Translated from French)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | The Casimir element | + | The Casimir element $ b _ \phi $ |
| + | determined by $ \phi $ | ||
| + | is called the Casimir element of the linear representation $ \phi $. | ||
An additional good reference is [[#References|[a1]]]. | An additional good reference is [[#References|[a1]]]. | ||
Latest revision as of 10:08, 4 June 2020
Casimir operator
A central element of special form in the universal enveloping algebra of a semi-simple Lie algebra. Such operators were first introduced, for a particular case, by H. Casimir [1].
Let $ \mathfrak g $ be a semi-simple finite-dimensional Lie algebra over a field of characteristic $ 0 $, and let $ B $ be an invariant symmetric bilinear form on $ \mathfrak g $( that is, $ B ( [ x , y ] , z ) =B ( x , [ y , z ] ) $ for all $ x , y , z \in \mathfrak g $) which is non-degenerate on a Cartan subalgebra $ \mathfrak g _ {0} \subset \mathfrak g $. Then a Casimir element of the Lie algebra $ \mathfrak g $ with respect to the form $ B $ is an element of the universal enveloping algebra $ U ( \mathfrak g ) $ that is representable in the form
$$ b = \sum _ { i=1 } ^ { k } e _ {i} f _ {i} . $$
Here $ \{ e _ {i} \} $, $ \{ f _ {i} \} $ are dual bases of $ \mathfrak g _ {0} $ with respect to $ B $, that is, $ B ( e _ {i} , f _ {i} ) = \delta _ {ij} $, $ i = 1 \dots k $, where $ \delta _ {ij} $ is the Kronecker symbol and $ k = \mathop{\rm dim} \mathfrak g _ {0} $. The element $ b $ does not depend on the choice of the dual bases in $ \mathfrak g _ {0} $ and belongs to the centre of $ U ( \mathfrak g _ {0} ) $. If $ \mathfrak g $ is a simple algebra, then a Casimir element of $ \mathfrak g $ defined by the Killing form $ B $ is the unique (up to a scalar multiplier) central element in $ U ( \mathfrak g ) $ that is representable as a homogeneous quadratic polynomial in the elements of $ \mathfrak g $.
Every linear representation $ \phi $ of a semi-simple algebra $ \mathfrak g $ in a finite-dimensional space $ V $ defines an invariant symmetric bilinear form
$$ B _ \phi ( x , y ) = \ \mathop{\rm Tr} ( \phi (x) \phi (y) ) $$
on $ \mathfrak g $, which is non-degenerate on the subalgebra $ \mathfrak g _ {0} \subset \mathfrak g $ complementary to $ \mathop{\rm ker} \phi $, and therefore also defines some Casimir element $ b _ \phi \in U ( \mathfrak g ) $. If $ \phi $ is an irreducible representation, then the extension of $ \phi $ onto $ U ( \mathfrak g ) $ takes $ b _ \phi $ into $ ( k / \mathop{\rm dim} V ) E $.
References
| [1] | H. Casimir, B.L. van der Waerden, "Algebraischer Beweis der Vollständigen Reduzibilität der Darstellungen halbeinfacher Liescher Gruppen" Math. Ann. , 111 (1935) pp. 1–2 |
| [2] | N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley (1975) (Translated from French) |
| [3] | J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French) |
| [4] | N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979)) |
| [5] | M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian) |
| [6] | J. Dixmier, "Enveloping algebras" , North-Holland (1977) (Translated from French) |
Comments
The Casimir element $ b _ \phi $ determined by $ \phi $ is called the Casimir element of the linear representation $ \phi $.
An additional good reference is [a1].
References
| [a1] | J.E. Humphreys, "Introduction to Lie algebras and representation theory" , Springer (1972) |
Casimir element. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Casimir_element&oldid=46267