Difference between revisions of "Carleson set"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0204401.png | ||
+ | $#A+1 = 15 n = 0 | ||
+ | $#C+1 = 15 : ~/encyclopedia/old_files/data/C020/C.0200440 Carleson set | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | of | + | A closed set $ E \subset [0, 2 \pi ) $ |
+ | on which every function $ f (t) $ | ||
+ | defined and continuous on this set is representable by a series of the form $ \sum _ {n = 0 } ^ \infty a _ {n} e ^ {i n t } $, | ||
+ | where $ \sum _ {n = 1 } ^ \infty | a _ {n} | < + \infty $. | ||
+ | Introduced by L. Carleson [[#References|[1]]]. Carleson sets form an important class of so-called thin sets (cf. [[Fine set|Fine set]]; [[Thinness of a set|Thinness of a set]]). In order that a closed set $ E \subset [0, 2 \pi ) $ | ||
+ | be a Carleson set, it is necessary and sufficient that there exists a constant $ c > 0 $ | ||
+ | such that the Fourier–Stieltjes coefficients | ||
− | + | $$ | |
+ | c _ {n} ( \mu ) = \ | ||
+ | { | ||
+ | \frac{1}{2 \pi } | ||
+ | } | ||
+ | \int\limits _ { 0 } ^ { {2 } \pi } | ||
+ | e ^ {-i n t } \ | ||
+ | d \mu (t),\ \ | ||
+ | n = 0, \pm 1 \dots | ||
+ | $$ | ||
+ | |||
+ | of each measure $ \mu $ | ||
+ | concentrated on $ E $ | ||
+ | satisfy the inequality | ||
+ | |||
+ | $$ | ||
+ | \sup _ {n \geq 0 } \ | ||
+ | | c _ {n} ( \mu ) | > c | ||
+ | \int\limits _ { 0 } ^ { {2 } \pi } | ||
+ | | d \mu (t) | . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Carleson, "Sets of uniqueness for functions regular in the unit circle" ''Acta Math.'' , '''87''' : 3–4 (1952) pp. 325–345</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I. Wik, "On linear dependence in closed sets" ''Arkiv. Mat.'' , '''4''' : 2–3 (1960) pp. 209–218</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.-P. Kahane, R. Salem, "Ensembles parfaits et séries trigonométriques" , Hermann (1963) pp. 142</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.-P. Kahane, "Séries de Fourier absolument convergentes" , Springer (1970)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Carleson, "Sets of uniqueness for functions regular in the unit circle" ''Acta Math.'' , '''87''' : 3–4 (1952) pp. 325–345</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I. Wik, "On linear dependence in closed sets" ''Arkiv. Mat.'' , '''4''' : 2–3 (1960) pp. 209–218</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.-P. Kahane, R. Salem, "Ensembles parfaits et séries trigonométriques" , Hermann (1963) pp. 142</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.-P. Kahane, "Séries de Fourier absolument convergentes" , Springer (1970)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | A closed set | + | A closed set $ E \subset [0, 2 \pi ) $ |
+ | is called a Helson set if every function $ f (t) $ | ||
+ | defined and continuous on $ E $ | ||
+ | is representable by a series of the form $ \sum _ {n = - \infty } ^ \infty a _ {n} e ^ {i n t } $, | ||
+ | where $ \sum _ {n = - \infty } ^ \infty | a _ {n} | < \infty $; | ||
+ | see [[#References|[a1]]]. Obviously, every Carleson set is a Helson set. I. Wik proved the surprising result that, conversely, every Helson set is a Carleson set; see [[#References|[2]]]. So the two notions amount to the same. | ||
Using a technique of S.W. Drury, N.Th. Varopoulos proved in 1970 that the union of two Helson sets is again a Helson set; see [[#References|[a2]]]. | Using a technique of S.W. Drury, N.Th. Varopoulos proved in 1970 that the union of two Helson sets is again a Helson set; see [[#References|[a2]]]. |
Latest revision as of 10:23, 2 June 2020
A closed set $ E \subset [0, 2 \pi ) $
on which every function $ f (t) $
defined and continuous on this set is representable by a series of the form $ \sum _ {n = 0 } ^ \infty a _ {n} e ^ {i n t } $,
where $ \sum _ {n = 1 } ^ \infty | a _ {n} | < + \infty $.
Introduced by L. Carleson [1]. Carleson sets form an important class of so-called thin sets (cf. Fine set; Thinness of a set). In order that a closed set $ E \subset [0, 2 \pi ) $
be a Carleson set, it is necessary and sufficient that there exists a constant $ c > 0 $
such that the Fourier–Stieltjes coefficients
$$ c _ {n} ( \mu ) = \ { \frac{1}{2 \pi } } \int\limits _ { 0 } ^ { {2 } \pi } e ^ {-i n t } \ d \mu (t),\ \ n = 0, \pm 1 \dots $$
of each measure $ \mu $ concentrated on $ E $ satisfy the inequality
$$ \sup _ {n \geq 0 } \ | c _ {n} ( \mu ) | > c \int\limits _ { 0 } ^ { {2 } \pi } | d \mu (t) | . $$
References
[1] | L. Carleson, "Sets of uniqueness for functions regular in the unit circle" Acta Math. , 87 : 3–4 (1952) pp. 325–345 |
[2] | I. Wik, "On linear dependence in closed sets" Arkiv. Mat. , 4 : 2–3 (1960) pp. 209–218 |
[3] | J.-P. Kahane, R. Salem, "Ensembles parfaits et séries trigonométriques" , Hermann (1963) pp. 142 |
[4] | J.-P. Kahane, "Séries de Fourier absolument convergentes" , Springer (1970) |
Comments
A closed set $ E \subset [0, 2 \pi ) $ is called a Helson set if every function $ f (t) $ defined and continuous on $ E $ is representable by a series of the form $ \sum _ {n = - \infty } ^ \infty a _ {n} e ^ {i n t } $, where $ \sum _ {n = - \infty } ^ \infty | a _ {n} | < \infty $; see [a1]. Obviously, every Carleson set is a Helson set. I. Wik proved the surprising result that, conversely, every Helson set is a Carleson set; see [2]. So the two notions amount to the same.
Using a technique of S.W. Drury, N.Th. Varopoulos proved in 1970 that the union of two Helson sets is again a Helson set; see [a2].
References
[a1] | H. Helson, "Fourier transforms on perfect sets" Studia Math. , 14 (1954) pp. 209–213 |
[a2] | N.Th. Varopoulos, "Sur la réunion de deux ensembles de Helson" C.R. Acad. Sci. Paris Sér. A-B , 271 (1970) pp. A251-A253 |
Carleson set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Carleson_set&oldid=46219