Difference between revisions of "Carathéodory-Fejér problem"
Ulf Rehmann (talk | contribs) m (moved Caratheodory-Fejer problem to Carathéodory-Fejér problem: accented title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0203201.png | ||
+ | $#A+1 = 20 n = 0 | ||
+ | $#C+1 = 20 : ~/encyclopedia/old_files/data/C020/C.0200320 Carath\Aeeodory\ANDFej\Aeer problem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | The problem of extending a polynomial in $ z $ | ||
+ | to a power series representing a regular function in the disc $ | z | < 1 $ | ||
+ | which realizes the least value of the supremum of the modulus on the disc $ | z | < 1 $ | ||
+ | in the class of all regular functions in the unit disc having the given polynomial as initial segment of the MacLaurin series. The solution to this problem is given by the following theorem. | ||
Carathéodory–Fejér theorem [[#References|[1]]]. Let | Carathéodory–Fejér theorem [[#References|[1]]]. Let | ||
− | + | $$ | |
+ | P (z) = c _ {0} + | ||
+ | c _ {1} z + \dots + c _ {n-1} z ^ {n-1} | ||
+ | $$ | ||
+ | |||
+ | be a given polynomial, $ P (z) \not\equiv 0 $. | ||
+ | There exists a unique rational function $ R (z) = R ( z , c _ {0} \dots c _ {n-1} ) $ | ||
+ | of the form | ||
− | + | $$ | |
+ | R (z) = \lambda | ||
− | + | \frac{\overline \alpha \; _ {n-1} + | |
+ | \overline \alpha \; _ {n-2} z + \dots + \overline \alpha \; _ {0} z ^ {n-1} }{\alpha _ {0} + \alpha _ {1} z + \dots + \alpha _ {n-1} z ^ {n-1} } | ||
+ | ,\ \ | ||
+ | \lambda > 0 , | ||
+ | $$ | ||
− | regular in the unit disc and having | + | regular in the unit disc and having $ c _ {0} \dots c _ {n-1} $ |
+ | as the first $ n $ | ||
+ | coefficients of its MacLaurin expansion. This function, and only this, realizes the minimum value of | ||
− | + | $$ | |
+ | M _ {f} = \ | ||
+ | \sup _ | ||
+ | {| z | < 1 } \ | ||
+ | | f (z) | | ||
+ | $$ | ||
− | in the class of all regular functions | + | in the class of all regular functions $ f (z) $ |
+ | in the unit disc of the form | ||
− | + | $$ | |
+ | f (z) = P (z) + a _ {n} z ^ {n} + \dots , | ||
+ | $$ | ||
− | and this minimum value is | + | and this minimum value is $ \lambda = \lambda ( c _ {0} \dots c _ {n-1} ) $. |
− | The number | + | The number $ \lambda ( c _ {0} \dots c _ {n-1} ) $ |
+ | is equal to the largest positive root of the following equation of degree $ 2 n $: | ||
− | + | $$ | |
+ | \left | | ||
+ | \begin{array}{cccccccc} | ||
+ | - \lambda & 0 &\dots & 0 &c _ {0} &c _ {1} &\dots &c _ {n-1} \\ | ||
+ | 0 &- \lambda &\dots & 0 & 0 &c _ {0} &\dots &c _ {n-2} \\ | ||
+ | \cdot &\cdot &\dots &\cdot &\cdot &\cdot &\dots &\cdot \\ | ||
+ | 0 & 0 &\dots &- \lambda & 0 & 0 &\dots &c _ {0} \\ | ||
+ | \overline{c}\; _ {0} & 0 &\dots & 0 &- \lambda & 0 &\dots & 0 \\ | ||
+ | \overline{c}\; _ {1} &\overline{c}\; _ {0} &\dots & 0 & 0 &- \lambda &\dots & 0 \\ | ||
+ | \cdot &\cdot &\dots &\cdot &\cdot &\cdot &\dots &\cdot \\ | ||
+ | \overline{c}\; _ {n-1} &\overline{c}\; _ {n-2} &\dots &c | ||
+ | bar _ {0} & 0 & 0 &\dots &- \lambda \\ | ||
+ | \end{array} | ||
+ | \right | = 0 . | ||
+ | $$ | ||
− | If | + | If $ c _ {0} \dots c _ {n-1} $ |
+ | are real, then $ \lambda ( c _ {0} \dots c _ {n-1} ) $ | ||
+ | is the largest of the absolute values of the roots of the following equation of degree $ n $: | ||
− | + | $$ | |
+ | \left | | ||
+ | \begin{array}{ccccc} | ||
+ | - \lambda & 0 &\dots & 0 &c _ {0} \\ | ||
+ | 0 &- \lambda &\dots &c _ {0} &c _ {1} \\ | ||
+ | \cdot &\cdot &\dots &\cdot &\cdot \\ | ||
+ | \cdot &\cdot &\dots &\cdot &\cdot \\ | ||
+ | c _ {0} &c _ {1} &\dots &c _ {n-1} &- \lambda \\ | ||
+ | \end{array} | ||
+ | \right | = 0 . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Carathéodory, L. Fejér, "Ueber den Zusammenhang der Extremen von harmonischen Funktionen mit ihren Koeffizienten und den Picard–Landau'schen Satz" ''Rend. Circ. Mat. Palermo'' , '''32''' (1911) pp. 218–239</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Carathéodory, L. Fejér, "Ueber den Zusammenhang der Extremen von harmonischen Funktionen mit ihren Koeffizienten und den Picard–Landau'schen Satz" ''Rend. Circ. Mat. Palermo'' , '''32''' (1911) pp. 218–239</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR></table> |
Latest revision as of 06:30, 30 May 2020
The problem of extending a polynomial in $ z $
to a power series representing a regular function in the disc $ | z | < 1 $
which realizes the least value of the supremum of the modulus on the disc $ | z | < 1 $
in the class of all regular functions in the unit disc having the given polynomial as initial segment of the MacLaurin series. The solution to this problem is given by the following theorem.
Carathéodory–Fejér theorem [1]. Let
$$ P (z) = c _ {0} + c _ {1} z + \dots + c _ {n-1} z ^ {n-1} $$
be a given polynomial, $ P (z) \not\equiv 0 $. There exists a unique rational function $ R (z) = R ( z , c _ {0} \dots c _ {n-1} ) $ of the form
$$ R (z) = \lambda \frac{\overline \alpha \; _ {n-1} + \overline \alpha \; _ {n-2} z + \dots + \overline \alpha \; _ {0} z ^ {n-1} }{\alpha _ {0} + \alpha _ {1} z + \dots + \alpha _ {n-1} z ^ {n-1} } ,\ \ \lambda > 0 , $$
regular in the unit disc and having $ c _ {0} \dots c _ {n-1} $ as the first $ n $ coefficients of its MacLaurin expansion. This function, and only this, realizes the minimum value of
$$ M _ {f} = \ \sup _ {| z | < 1 } \ | f (z) | $$
in the class of all regular functions $ f (z) $ in the unit disc of the form
$$ f (z) = P (z) + a _ {n} z ^ {n} + \dots , $$
and this minimum value is $ \lambda = \lambda ( c _ {0} \dots c _ {n-1} ) $.
The number $ \lambda ( c _ {0} \dots c _ {n-1} ) $ is equal to the largest positive root of the following equation of degree $ 2 n $:
$$ \left | \begin{array}{cccccccc} - \lambda & 0 &\dots & 0 &c _ {0} &c _ {1} &\dots &c _ {n-1} \\ 0 &- \lambda &\dots & 0 & 0 &c _ {0} &\dots &c _ {n-2} \\ \cdot &\cdot &\dots &\cdot &\cdot &\cdot &\dots &\cdot \\ 0 & 0 &\dots &- \lambda & 0 & 0 &\dots &c _ {0} \\ \overline{c}\; _ {0} & 0 &\dots & 0 &- \lambda & 0 &\dots & 0 \\ \overline{c}\; _ {1} &\overline{c}\; _ {0} &\dots & 0 & 0 &- \lambda &\dots & 0 \\ \cdot &\cdot &\dots &\cdot &\cdot &\cdot &\dots &\cdot \\ \overline{c}\; _ {n-1} &\overline{c}\; _ {n-2} &\dots &c bar _ {0} & 0 & 0 &\dots &- \lambda \\ \end{array} \right | = 0 . $$
If $ c _ {0} \dots c _ {n-1} $ are real, then $ \lambda ( c _ {0} \dots c _ {n-1} ) $ is the largest of the absolute values of the roots of the following equation of degree $ n $:
$$ \left | \begin{array}{ccccc} - \lambda & 0 &\dots & 0 &c _ {0} \\ 0 &- \lambda &\dots &c _ {0} &c _ {1} \\ \cdot &\cdot &\dots &\cdot &\cdot \\ \cdot &\cdot &\dots &\cdot &\cdot \\ c _ {0} &c _ {1} &\dots &c _ {n-1} &- \lambda \\ \end{array} \right | = 0 . $$
References
[1] | C. Carathéodory, L. Fejér, "Ueber den Zusammenhang der Extremen von harmonischen Funktionen mit ihren Koeffizienten und den Picard–Landau'schen Satz" Rend. Circ. Mat. Palermo , 32 (1911) pp. 218–239 |
[2] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
Carathéodory-Fejér problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Carath%C3%A9odory-Fej%C3%A9r_problem&oldid=46201