Difference between revisions of "Canonical correlation coefficients"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0201401.png | ||
+ | $#A+1 = 31 n = 0 | ||
+ | $#C+1 = 31 : ~/encyclopedia/old_files/data/C020/C.0200140 Canonical correlation coefficients | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | of | + | Maximum values of correlation coefficients between pairs of linear functions |
− | + | $$ | |
+ | U = \alpha _ {1} X _ {1} + \dots + \alpha _ {s} X _ {s} ,\ \ | ||
+ | V = \beta _ {1} X _ {s+1} + \dots + \beta _ {t} X _ {s+t} $$ | ||
− | + | of two sets of random variables $ X _ {1} \dots X _ {s} $ | |
+ | and $ X _ {s+1} \dots X _ {s+t} $ | ||
+ | for which $ U $ | ||
+ | and $ V $ | ||
+ | are canonical random variables (see [[Canonical correlation|Canonical correlation]]). The problem of determining the maximum correlation coefficient between $ U $ | ||
+ | and $ V $ | ||
+ | under the conditions $ {\mathsf E} U = {\mathsf E} V = 0 $ | ||
+ | and $ {\mathsf E} U ^ {2} = {\mathsf E} V ^ {2} = 1 $ | ||
+ | can be solved using Lagrange multipliers. The canonical correlation coefficients are the roots $ \lambda _ {1} \geq \dots \geq \lambda _ {s} > 0 $ | ||
+ | of the equation | ||
− | + | $$ | |
+ | \left | | ||
+ | \begin{array}{rr} | ||
+ | - \lambda \Sigma _ {11} &\Sigma _ {12} \\ | ||
+ | \Sigma _ {21} &- \lambda \Sigma _ {22} \\ | ||
+ | \end{array} | ||
+ | \right | = 0 , | ||
+ | $$ | ||
− | + | where $ \Sigma _ {11} $ | |
+ | and $ \Sigma _ {22} $ | ||
+ | are the covariance matrices of $ X _ {1} \dots X _ {s} $ | ||
+ | and $ X _ {s+1} \dots X _ {s+t} $, | ||
+ | respectively, and $ \Sigma _ {12} = \Sigma _ {21} ^ {T} $ | ||
+ | is the covariance matrix between the variables of the first and second sets. The $ r $- | ||
+ | th root of the equation is called the $ r $- | ||
+ | th canonical correlation coefficient between $ X _ {1} \dots X _ {s} $ | ||
+ | and $ X _ {s+1} \dots X _ {s+t} $. | ||
+ | It is equal to the maximum value of the correlation coefficients between the pair of linear functions $ U ^ {(r)} $ | ||
+ | and $ V ^ {(r)} $ | ||
+ | of canonical random variables, each of which has variance one and is uncorrelated with the first $ r - 1 $ | ||
+ | pairs of variables $ U $ | ||
+ | and $ V $. | ||
+ | The coefficients $ \alpha ^ {(r)} = ( \alpha _ {1} ^ {(r)} \dots \alpha _ {s} ^ {(r)} ) ^ {T} $, | ||
+ | $ \beta ^ {(r)} = ( \beta _ {1} ^ {(r)} \dots \beta _ {t} ^ {(r)} ) ^ {T} $ | ||
+ | of $ U ^ {(r)} $ | ||
+ | and $ V ^ {(r)} $ | ||
+ | satisfy the equation | ||
+ | $$ | ||
+ | \left ( | ||
+ | \begin{array}{rr} | ||
+ | - \lambda \Sigma _ {11} &\Sigma _ {12} \\ | ||
+ | \Sigma _ {21} &- \lambda \Sigma _ {22} \\ | ||
+ | \end{array} | ||
+ | \right ) | ||
+ | \left ( \begin{array}{c} | ||
+ | \alpha \\ | ||
+ | \beta | ||
+ | \end{array} | ||
+ | \right ) = 0 | ||
+ | $$ | ||
+ | when $ \lambda = \lambda _ {r} $. | ||
====Comments==== | ====Comments==== | ||
See also [[Correlation|Correlation]]; [[Correlation coefficient|Correlation coefficient]]. | See also [[Correlation|Correlation]]; [[Correlation coefficient|Correlation coefficient]]. |
Revision as of 06:29, 30 May 2020
Maximum values of correlation coefficients between pairs of linear functions
$$ U = \alpha _ {1} X _ {1} + \dots + \alpha _ {s} X _ {s} ,\ \ V = \beta _ {1} X _ {s+1} + \dots + \beta _ {t} X _ {s+t} $$
of two sets of random variables $ X _ {1} \dots X _ {s} $ and $ X _ {s+1} \dots X _ {s+t} $ for which $ U $ and $ V $ are canonical random variables (see Canonical correlation). The problem of determining the maximum correlation coefficient between $ U $ and $ V $ under the conditions $ {\mathsf E} U = {\mathsf E} V = 0 $ and $ {\mathsf E} U ^ {2} = {\mathsf E} V ^ {2} = 1 $ can be solved using Lagrange multipliers. The canonical correlation coefficients are the roots $ \lambda _ {1} \geq \dots \geq \lambda _ {s} > 0 $ of the equation
$$ \left | \begin{array}{rr} - \lambda \Sigma _ {11} &\Sigma _ {12} \\ \Sigma _ {21} &- \lambda \Sigma _ {22} \\ \end{array} \right | = 0 , $$
where $ \Sigma _ {11} $ and $ \Sigma _ {22} $ are the covariance matrices of $ X _ {1} \dots X _ {s} $ and $ X _ {s+1} \dots X _ {s+t} $, respectively, and $ \Sigma _ {12} = \Sigma _ {21} ^ {T} $ is the covariance matrix between the variables of the first and second sets. The $ r $- th root of the equation is called the $ r $- th canonical correlation coefficient between $ X _ {1} \dots X _ {s} $ and $ X _ {s+1} \dots X _ {s+t} $. It is equal to the maximum value of the correlation coefficients between the pair of linear functions $ U ^ {(r)} $ and $ V ^ {(r)} $ of canonical random variables, each of which has variance one and is uncorrelated with the first $ r - 1 $ pairs of variables $ U $ and $ V $. The coefficients $ \alpha ^ {(r)} = ( \alpha _ {1} ^ {(r)} \dots \alpha _ {s} ^ {(r)} ) ^ {T} $, $ \beta ^ {(r)} = ( \beta _ {1} ^ {(r)} \dots \beta _ {t} ^ {(r)} ) ^ {T} $ of $ U ^ {(r)} $ and $ V ^ {(r)} $ satisfy the equation
$$ \left ( \begin{array}{rr} - \lambda \Sigma _ {11} &\Sigma _ {12} \\ \Sigma _ {21} &- \lambda \Sigma _ {22} \\ \end{array} \right ) \left ( \begin{array}{c} \alpha \\ \beta \end{array} \right ) = 0 $$
when $ \lambda = \lambda _ {r} $.
Comments
See also Correlation; Correlation coefficient.
Canonical correlation coefficients. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Canonical_correlation_coefficients&oldid=46194