|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | c0274701.png |
| + | $#A+1 = 110 n = 0 |
| + | $#C+1 = 110 : ~/encyclopedia/old_files/data/C027/C.0207470 CW\AAhcomplex, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''cellular decomposition'' | | ''cellular decomposition'' |
| | | |
− | A [[Cell complex|cell complex]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c0274701.png" /> satisfying the following conditions: (C) for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c0274702.png" /> the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c0274703.png" /> is finite, that is, consists of a finite number of cells. (For any subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c0274704.png" /> of a cell complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c0274705.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c0274706.png" /> is the notation for the intersection of all subcomplexes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c0274707.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c0274708.png" />.) (W) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c0274709.png" /> is some subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747010.png" /> and if for any cell <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747011.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747012.png" /> the intersection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747013.png" /> is closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747014.png" /> (and therefore in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747015.png" /> as well), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747016.png" /> is a closed subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747017.png" />. In this connection, each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747018.png" /> belongs to a definite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747019.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747020.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747021.png" />. | + | A [[Cell complex|cell complex]] $ X $ |
| + | satisfying the following conditions: (C) for any $ x \in X $ |
| + | the complex $ X (x) $ |
| + | is finite, that is, consists of a finite number of cells. (For any subset $ A $ |
| + | of a cell complex $ X $, |
| + | $ X (A) $ |
| + | is the notation for the intersection of all subcomplexes of $ X $ |
| + | containing $ A $.) |
| + | (W) If $ F $ |
| + | is some subset of $ X $ |
| + | and if for any cell $ t $ |
| + | in $ X $ |
| + | the intersection $ F \cap \overline{t}\; $ |
| + | is closed in $ \overline{t}\; $( |
| + | and therefore in $ X $ |
| + | as well), then $ F $ |
| + | is a closed subset of $ X $. |
| + | In this connection, each point $ x \in X $ |
| + | belongs to a definite set $ t _ {x} $ |
| + | of $ X $, |
| + | and $ X (x) = X ( t _ {x} ) = X ( \overline{t}\; _ {x} ) $. |
| | | |
| The notation CW comes from the initial letters of the (English) names for the above two conditions — (C) for closure finiteness and (W) for weak topology. | | The notation CW comes from the initial letters of the (English) names for the above two conditions — (C) for closure finiteness and (W) for weak topology. |
| | | |
− | A finite cell complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747022.png" /> satisfies both conditions (C) and (W). More generally, a cell complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747023.png" /> each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747024.png" /> of which is contained in some finite subcomplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747025.png" /> is a CW-complex. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747026.png" /> be a subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747027.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747028.png" /> is closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747029.png" /> for each cell <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747030.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747031.png" />. Then for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747032.png" /> the intersection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747033.png" /> is closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747034.png" />. If the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747035.png" /> does not belong to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747036.png" />, then the open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747037.png" /> contains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747038.png" /> and does not intersect <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747039.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747040.png" /> is open and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747041.png" /> is closed. | + | A finite cell complex $ X $ |
| + | satisfies both conditions (C) and (W). More generally, a cell complex $ X $ |
| + | each point $ x $ |
| + | of which is contained in some finite subcomplex $ Y (x) $ |
| + | is a CW-complex. Let $ F $ |
| + | be a subset of $ X $ |
| + | such that $ F \cap \overline{t}\; $ |
| + | is closed in $ \overline{t}\; $ |
| + | for each cell $ t $ |
| + | in $ X $. |
| + | Then for any $ x \in Y $ |
| + | the intersection $ F \cap Y (x) $ |
| + | is closed in $ X $. |
| + | If the point $ x $ |
| + | does not belong to $ F $, |
| + | then the open set $ U _ {x} = X \setminus ( F \cap Y (x) ) $ |
| + | contains $ x $ |
| + | and does not intersect $ F $. |
| + | The set $ ( X \setminus F ) = \cup _ {x \in X \setminus F } U _ {x} $ |
| + | is open and $ F $ |
| + | is closed. |
| | | |
− | The class of CW-complexes (or the class of spaces of the same homotopy type as a CW-complex) is the most suitable class of topological spaces in relation to homotopy theory. Thus, if a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747042.png" /> of a CW-complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747043.png" /> is closed, then a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747044.png" /> from the topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747045.png" /> into a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747046.png" /> is continuous if and only if the restrictions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747047.png" /> to the closures of the cells of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747048.png" /> are continuous. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747049.png" /> is a compact subset of a CW-complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747050.png" />, then the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747051.png" /> is finite. There exists for every cell <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747052.png" /> of a CW-complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747053.png" /> a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747054.png" /> that is open in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747055.png" /> and has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747056.png" /> as a deformation retract. | + | The class of CW-complexes (or the class of spaces of the same homotopy type as a CW-complex) is the most suitable class of topological spaces in relation to homotopy theory. Thus, if a subset $ A $ |
| + | of a CW-complex $ X $ |
| + | is closed, then a mapping $ f $ |
| + | from the topological space $ A $ |
| + | into a topological space $ Y $ |
| + | is continuous if and only if the restrictions of $ f $ |
| + | to the closures of the cells of $ X $ |
| + | are continuous. If $ C $ |
| + | is a compact subset of a CW-complex $ X $, |
| + | then the complex $ X (C) $ |
| + | is finite. There exists for every cell $ t $ |
| + | of a CW-complex $ X $ |
| + | a set $ D $ |
| + | that is open in $ \overline{t}\; $ |
| + | and has $ \overline{t}\; \setminus t $ |
| + | as a deformation retract. |
| | | |
− | In practice, CW-complexes are constructed by an inductive procedure: Each stage consists in glueing cells of given dimension to the result of the previous stage. The cellular structure of such a complex is directly related to its homotopy properties. Even for such "good" spaces as polyhedra it is helpful to consider their representation as CW-complexes: There are usually fewer in such a representation than in a simplicial triangulation. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747057.png" /> is obtained by attaching <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747058.png" />-dimensional cells to the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747059.png" />, then the subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747060.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747061.png" />, is a strong deformation retract of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747062.png" />. | + | In practice, CW-complexes are constructed by an inductive procedure: Each stage consists in glueing cells of given dimension to the result of the previous stage. The cellular structure of such a complex is directly related to its homotopy properties. Even for such "good" spaces as polyhedra it is helpful to consider their representation as CW-complexes: There are usually fewer in such a representation than in a simplicial triangulation. If $ X $ |
| + | is obtained by attaching $ n $- |
| + | dimensional cells to the space $ A $, |
| + | then the subset $ X \times 0 \cup A \times I $, |
| + | where $ I = [ 0 , 1 ] $, |
| + | is a strong deformation retract of $ X \times I $. |
| | | |
− | A relative CW-complex is a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747063.png" /> consisting of a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747064.png" /> and a closed subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747065.png" />, together with a sequence of closed subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747066.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747067.png" />, satisfying the following conditions: a) the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747068.png" /> is obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747069.png" /> by adjoining <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747070.png" />-cells; b) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747071.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747072.png" /> is obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747073.png" /> by adjoining <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747074.png" />-dimensional cells; c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747075.png" />; d) the topology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747076.png" /> is compatible with the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747077.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747078.png" /> is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747080.png" />-dimensional skeleton of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747081.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747082.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747083.png" />, the relative CW-complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747084.png" /> is a CW-complex in the previous sense and its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747085.png" />-dimensional skeleton is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747086.png" />. | + | A relative CW-complex is a pair $ ( X , A ) $ |
| + | consisting of a topological space $ X $ |
| + | and a closed subset $ A $, |
| + | together with a sequence of closed subspaces $ ( X , A ) ^ {k} $, |
| + | $ k \geq 0 $, |
| + | satisfying the following conditions: a) the space $ ( X , A ) ^ {0} $ |
| + | is obtained from $ A $ |
| + | by adjoining $ 0 $- |
| + | cells; b) for $ k \geq 1 $, |
| + | $ ( X , A ) ^ {k} $ |
| + | is obtained from $ ( X , A ) ^ {k-1} $ |
| + | by adjoining $ k $- |
| + | dimensional cells; c) $ X = \cup ( X , A ) ^ {k} $; |
| + | d) the topology of $ X $ |
| + | is compatible with the family $ \{ ( X , A ) ^ {k} \} $. |
| + | The space $ ( X , A ) ^ {k} $ |
| + | is called the $ k $- |
| + | dimensional skeleton of $ X $ |
| + | relative to $ A $. |
| + | When $ A = \emptyset $, |
| + | the relative CW-complex $ ( X , \emptyset ) = X $ |
| + | is a CW-complex in the previous sense and its $ k $- |
| + | dimensional skeleton is $ X ^ {k} $. |
| | | |
− | Examples. 1) The pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747087.png" /> of simplicial complexes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747088.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747089.png" />, defines a relative CW-complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747090.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747091.png" />. 2) The ball <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747092.png" /> is a CW-complex: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747093.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747094.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747095.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747096.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747097.png" />. The sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747098.png" /> is a subcomplex of the CW-complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c02747099.png" />. 3) If the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c027470100.png" /> is a relative CW-complex, then so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c027470101.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c027470102.png" /> (when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c027470103.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c027470104.png" /> is, by definition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c027470105.png" />). 4) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c027470106.png" /> is a relative CW-complex, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c027470107.png" /> is a CW-complex and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c027470108.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c027470109.png" /> is the quotient space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c027470110.png" /> obtained by identifying all points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027470/c027470111.png" /> with a single point. | + | Examples. 1) The pair $ ( K , L ) $ |
| + | of simplicial complexes $ K , L $, |
| + | with $ L \subset K $, |
| + | defines a relative CW-complex $ ( | K | , | L | ) $, |
| + | where $ ( | K | , | L | ) ^ {k} = ( K ^ {k} \cup L ) $. |
| + | 2) The ball $ V ^ {n} $ |
| + | is a CW-complex: $ ( V ^ {n} ) ^ {k} = p _ {0} $ |
| + | for $ k < n - 1 $, |
| + | $ ( V ^ {n} ) ^ {n-1} = S ^ {n-1} $ |
| + | and $ ( V ^ {n} ) ^ {k} = V ^ {n} $ |
| + | for $ k \geq n $. |
| + | The sphere $ S ^ {n-1} $ |
| + | is a subcomplex of the CW-complex $ V ^ {n} $. |
| + | 3) If the pair $ ( X , A ) $ |
| + | is a relative CW-complex, then so is $ ( X \times I , A \times I ) $, |
| + | and $ ( X \times I , A \times I ) ^ {k} = (( X , A ) ^ {k} \times \{ 0 , 1 \} ) \cup ( ( X , A ) ^ {k-1} \times I ) $( |
| + | when $ k = 0 $, |
| + | $ ( X , A ) ^ {-1} $ |
| + | is, by definition, $ A $). |
| + | 4) If $ ( X , A ) $ |
| + | is a relative CW-complex, then $ X / A $ |
| + | is a CW-complex and $ ( X , A ) ^ {k} = ( X / A ) ^ {k} $, |
| + | where $ X / A $ |
| + | is the quotient space of $ X $ |
| + | obtained by identifying all points of $ A $ |
| + | with a single point. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Teleman, "Grundzüge der Topologie und differenzierbare Mannigfaltigkeiten" , Deutsch. Verlag Wissenschaft. (1968) (Translated from Rumanian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Dold, "Lectures on algebraic topology" , Springer (1980)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Teleman, "Grundzüge der Topologie und differenzierbare Mannigfaltigkeiten" , Deutsch. Verlag Wissenschaft. (1968) (Translated from Rumanian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Dold, "Lectures on algebraic topology" , Springer (1980)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
cellular decomposition
A cell complex $ X $
satisfying the following conditions: (C) for any $ x \in X $
the complex $ X (x) $
is finite, that is, consists of a finite number of cells. (For any subset $ A $
of a cell complex $ X $,
$ X (A) $
is the notation for the intersection of all subcomplexes of $ X $
containing $ A $.)
(W) If $ F $
is some subset of $ X $
and if for any cell $ t $
in $ X $
the intersection $ F \cap \overline{t}\; $
is closed in $ \overline{t}\; $(
and therefore in $ X $
as well), then $ F $
is a closed subset of $ X $.
In this connection, each point $ x \in X $
belongs to a definite set $ t _ {x} $
of $ X $,
and $ X (x) = X ( t _ {x} ) = X ( \overline{t}\; _ {x} ) $.
The notation CW comes from the initial letters of the (English) names for the above two conditions — (C) for closure finiteness and (W) for weak topology.
A finite cell complex $ X $
satisfies both conditions (C) and (W). More generally, a cell complex $ X $
each point $ x $
of which is contained in some finite subcomplex $ Y (x) $
is a CW-complex. Let $ F $
be a subset of $ X $
such that $ F \cap \overline{t}\; $
is closed in $ \overline{t}\; $
for each cell $ t $
in $ X $.
Then for any $ x \in Y $
the intersection $ F \cap Y (x) $
is closed in $ X $.
If the point $ x $
does not belong to $ F $,
then the open set $ U _ {x} = X \setminus ( F \cap Y (x) ) $
contains $ x $
and does not intersect $ F $.
The set $ ( X \setminus F ) = \cup _ {x \in X \setminus F } U _ {x} $
is open and $ F $
is closed.
The class of CW-complexes (or the class of spaces of the same homotopy type as a CW-complex) is the most suitable class of topological spaces in relation to homotopy theory. Thus, if a subset $ A $
of a CW-complex $ X $
is closed, then a mapping $ f $
from the topological space $ A $
into a topological space $ Y $
is continuous if and only if the restrictions of $ f $
to the closures of the cells of $ X $
are continuous. If $ C $
is a compact subset of a CW-complex $ X $,
then the complex $ X (C) $
is finite. There exists for every cell $ t $
of a CW-complex $ X $
a set $ D $
that is open in $ \overline{t}\; $
and has $ \overline{t}\; \setminus t $
as a deformation retract.
In practice, CW-complexes are constructed by an inductive procedure: Each stage consists in glueing cells of given dimension to the result of the previous stage. The cellular structure of such a complex is directly related to its homotopy properties. Even for such "good" spaces as polyhedra it is helpful to consider their representation as CW-complexes: There are usually fewer in such a representation than in a simplicial triangulation. If $ X $
is obtained by attaching $ n $-
dimensional cells to the space $ A $,
then the subset $ X \times 0 \cup A \times I $,
where $ I = [ 0 , 1 ] $,
is a strong deformation retract of $ X \times I $.
A relative CW-complex is a pair $ ( X , A ) $
consisting of a topological space $ X $
and a closed subset $ A $,
together with a sequence of closed subspaces $ ( X , A ) ^ {k} $,
$ k \geq 0 $,
satisfying the following conditions: a) the space $ ( X , A ) ^ {0} $
is obtained from $ A $
by adjoining $ 0 $-
cells; b) for $ k \geq 1 $,
$ ( X , A ) ^ {k} $
is obtained from $ ( X , A ) ^ {k-1} $
by adjoining $ k $-
dimensional cells; c) $ X = \cup ( X , A ) ^ {k} $;
d) the topology of $ X $
is compatible with the family $ \{ ( X , A ) ^ {k} \} $.
The space $ ( X , A ) ^ {k} $
is called the $ k $-
dimensional skeleton of $ X $
relative to $ A $.
When $ A = \emptyset $,
the relative CW-complex $ ( X , \emptyset ) = X $
is a CW-complex in the previous sense and its $ k $-
dimensional skeleton is $ X ^ {k} $.
Examples. 1) The pair $ ( K , L ) $
of simplicial complexes $ K , L $,
with $ L \subset K $,
defines a relative CW-complex $ ( | K | , | L | ) $,
where $ ( | K | , | L | ) ^ {k} = ( K ^ {k} \cup L ) $.
2) The ball $ V ^ {n} $
is a CW-complex: $ ( V ^ {n} ) ^ {k} = p _ {0} $
for $ k < n - 1 $,
$ ( V ^ {n} ) ^ {n-1} = S ^ {n-1} $
and $ ( V ^ {n} ) ^ {k} = V ^ {n} $
for $ k \geq n $.
The sphere $ S ^ {n-1} $
is a subcomplex of the CW-complex $ V ^ {n} $.
3) If the pair $ ( X , A ) $
is a relative CW-complex, then so is $ ( X \times I , A \times I ) $,
and $ ( X \times I , A \times I ) ^ {k} = (( X , A ) ^ {k} \times \{ 0 , 1 \} ) \cup ( ( X , A ) ^ {k-1} \times I ) $(
when $ k = 0 $,
$ ( X , A ) ^ {-1} $
is, by definition, $ A $).
4) If $ ( X , A ) $
is a relative CW-complex, then $ X / A $
is a CW-complex and $ ( X , A ) ^ {k} = ( X / A ) ^ {k} $,
where $ X / A $
is the quotient space of $ X $
obtained by identifying all points of $ A $
with a single point.
References
[1] | C. Teleman, "Grundzüge der Topologie und differenzierbare Mannigfaltigkeiten" , Deutsch. Verlag Wissenschaft. (1968) (Translated from Rumanian) |
[2] | E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) |
[3] | A. Dold, "Lectures on algebraic topology" , Springer (1980) |
CW-complexes have been introduced by J.H.C. Whitehead [a4] as a generalization of simplicial complexes (cf. Simplicial complex). An obvious advantage is that the number of cells needed in a decomposition is usually much smaller than the number of simplices in a triangulation. This is particularly profitable when computing homology and cohomology, and fundamental groups (cf. Fundamental group; [a1]). CW-complexes have proved useful in the context of classifying spaces for homotopy functors, and occur as Eilenberg–MacLane spaces (cf. Eilenberg–MacLane space).
Two textbooks specialized on CW-complexes are [a2] and [a3].
References
[a1] | R. Brown, "Elements of modern topology" , McGraw-Hill (1968) |
[a2] | G.E. Cooke, P.L. Finney, "Homology of cell complexes" , Princeton Univ. Press (1967) |
[a3] | A.T. Lundell, S. Weingram, "The topology of CW-complexes" , v. Nostrand (1969) |
[a4] | J.H.C. Whitehead, "Combinatorial homotopy I" Bull. Amer. Math. Soc. , 55 (1949) pp. 213–245 |