Difference between revisions of "Brownian excursion"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | b1109401.png | ||
+ | $#A+1 = 43 n = 0 | ||
+ | $#C+1 = 43 : ~/encyclopedia/old_files/data/B110/B.1100940 Brownian excursion, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Brownian excursion process'' | ''Brownian excursion process'' | ||
− | The limiting process of a [[Bernoulli excursion|Bernoulli excursion]]. If | + | The limiting process of a [[Bernoulli excursion|Bernoulli excursion]]. If $ \{ \eta _ {0} , \dots, \eta _ {2n } \} $ |
+ | is a Bernoulli excursion, and if $ n \rightarrow \infty $, | ||
+ | then the finite-dimensional distributions of the process $ \{ { {{\eta _ {[ 2nt ] } } / {\sqrt {2n } } } } : {0 \leq t \leq 1 } \} $ | ||
+ | converge to the corresponding finite-dimensional distributions of a process $ \{ {\eta ( t ) } : {0 \leq t \leq 1 } \} $ | ||
+ | which is called a Brownian excursion (process). The Brownian excursion process $ \{ {\eta ( t ) } : {0 \leq t \leq 1 } \} $ | ||
+ | is a [[Markov process|Markov process]] for which $ {\mathsf P} \{ \eta ( 0 ) = 0 \} = {\mathsf P} \{ \eta ( 1 ) = 0 \} = 1 $ | ||
+ | and $ {\mathsf P} \{ \eta ( t ) \geq 0 \} = 1 $ | ||
+ | for $ 0 \leq t \leq 1 $. | ||
+ | If $ 0 < t < 1 $, | ||
+ | then $ \eta ( t ) $ | ||
+ | has a density function $ f ( t,x ) $. | ||
+ | Obviously, $ f ( t,x ) = 0 $ | ||
+ | for $ x \leq 0 $. | ||
+ | If $ 0 < t < 1 $ | ||
+ | and $ x > 0 $, | ||
+ | then | ||
− | + | $$ | |
+ | f ( t,x ) = { | ||
+ | \frac{2x ^ {2} }{\sqrt {2 \pi t ^ {3} ( 1 - t ) ^ {3} } } | ||
+ | } e ^ {- { {x ^ {2} } / {( 2t ( 1 - t ) ) } } } . | ||
+ | $$ | ||
− | If < | + | If $ 0 < t < u < 1 $, |
+ | then the random variables $ \eta ( t ) $ | ||
+ | and $ \eta ( u ) $ | ||
+ | have a joint density function $ f ( t,x;u,y ) $. | ||
+ | One finds that $ f ( t,x;u,y ) = 0 $ | ||
+ | if $ x \leq 0 $ | ||
+ | or $ y \leq 0 $. | ||
+ | If $ 0 < t < u < 1 $ | ||
+ | and $ x > 0 $, | ||
+ | $ y > 0 $, | ||
+ | then | ||
− | + | $$ | |
+ | f ( t,x;u,y ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = | ||
+ | { | ||
+ | \frac{\sqrt {8 \pi } xy }{\sqrt {t ^ {3} ( u - t ) ( 1 - u ) ^ {3} } } | ||
+ | } \phi \left ( { | ||
+ | \frac{x}{\sqrt t } | ||
+ | } \right ) \phi \left ( { | ||
+ | \frac{y}{\sqrt {1 - u } } | ||
+ | } \right ) \times | ||
+ | $$ | ||
− | + | $$ | |
+ | \times | ||
+ | \left [ \phi \left ( { | ||
+ | \frac{x - y }{\sqrt {u - t } } | ||
+ | } \right ) - \phi \left ( { | ||
+ | \frac{x + y }{\sqrt {u - t } } | ||
+ | } \right ) \right ] , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | \phi ( x ) = { | ||
+ | \frac{1}{\sqrt {2 \pi } } | ||
+ | } e ^ { {{x ^ {2} } / 2 } } | ||
+ | $$ | ||
− | is the normal density function (cf. [[Normal distribution|Normal distribution]]; [[Density of a probability distribution|Density of a probability distribution]]). Since | + | is the normal density function (cf. [[Normal distribution|Normal distribution]]; [[Density of a probability distribution|Density of a probability distribution]]). Since $ \{ {\eta ( t ) } : {0 \leq t \leq 1 } \} $ |
+ | is a Markov process, the density functions $ f ( t,x ) $ | ||
+ | and $ f ( t,x;u,y ) $ | ||
+ | completely determine its finite-dimensional distributions. For various properties of the Brownian excursion process, see [[#References|[a3]]], [[#References|[a1]]], [[#References|[a4]]]. | ||
− | The distributions of various functionals of the Brownian excursion | + | The distributions of various functionals of the Brownian excursion $ \{ {\eta ( t ) } : {0 \leq t \leq 1 } \} $ |
+ | frequently appear in [[Probability theory|probability theory]]. In particular, many limit distributions of the Bernoulli excursion $ \{ \eta _ {0} \dots \eta _ {2n } \} $ | ||
+ | can be expressed simply as the distributions of certain functionals of the Brownian excursion. For example, if $ \delta _ {n} = \max ( \eta _ {0} , \dots, \eta _ {2n } ) $, | ||
+ | then | ||
− | + | $$ | |
+ | {\lim\limits } _ {n \rightarrow \infty } {\mathsf P} \left \{ { | ||
+ | \frac{\delta _ {n} }{\sqrt {2n } } | ||
+ | } \leq x \right \} = F ( x ) , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | F ( x ) = {\mathsf P} \left \{ \sup _ {0 \leq t \leq 1 } \eta ( t ) \leq x \right \} . | ||
+ | $$ | ||
Explicitly, | Explicitly, | ||
− | + | $$ | |
+ | F ( x ) = \sum _ {j = - \infty } ^ \infty ( 1 - 4j ^ {2} x ^ {2} ) e ^ {- 2j ^ {2} x ^ {2} } = | ||
+ | $$ | ||
− | + | $$ | |
+ | = | ||
+ | { | ||
+ | \frac{\sqrt 2 \pi ^ {5/2 } }{x ^ {3} } | ||
+ | } \sum _ {j = 0 } ^ \infty j ^ {2} e ^ {- { {j ^ {2} \pi ^ {2} } / {( 2x ^ {2} ) } } } | ||
+ | $$ | ||
− | for | + | for $ x > 0 $ |
+ | and $ F ( x ) = 0 $ | ||
+ | for $ x \leq 0 $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K.L. Chung, "Excursions in Brownian Motion" ''Arkiv für Math.'' , '''14''' (1976) pp. 157–179</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> K. Itô, H.P. McKean, "Diffusion processes and their sample paths" , Springer (1965)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Lévy, "Processus stochastiques et mouvement Brownien" , Gauthier-Villars (1965) (Edition: Second)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> L. Takács, "A Bernoulli excursion and its various applications" ''Adv. in Probability'' , '''23''' (1991) pp. 557–585</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K.L. Chung, "Excursions in Brownian Motion" ''Arkiv für Math.'' , '''14''' (1976) pp. 157–179</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> K. Itô, H.P. McKean, "Diffusion processes and their sample paths" , Springer (1965)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Lévy, "Processus stochastiques et mouvement Brownien" , Gauthier-Villars (1965) (Edition: Second)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> L. Takács, "A Bernoulli excursion and its various applications" ''Adv. in Probability'' , '''23''' (1991) pp. 557–585</TD></TR></table> |
Latest revision as of 06:29, 30 May 2020
Brownian excursion process
The limiting process of a Bernoulli excursion. If $ \{ \eta _ {0} , \dots, \eta _ {2n } \} $ is a Bernoulli excursion, and if $ n \rightarrow \infty $, then the finite-dimensional distributions of the process $ \{ { {{\eta _ {[ 2nt ] } } / {\sqrt {2n } } } } : {0 \leq t \leq 1 } \} $ converge to the corresponding finite-dimensional distributions of a process $ \{ {\eta ( t ) } : {0 \leq t \leq 1 } \} $ which is called a Brownian excursion (process). The Brownian excursion process $ \{ {\eta ( t ) } : {0 \leq t \leq 1 } \} $ is a Markov process for which $ {\mathsf P} \{ \eta ( 0 ) = 0 \} = {\mathsf P} \{ \eta ( 1 ) = 0 \} = 1 $ and $ {\mathsf P} \{ \eta ( t ) \geq 0 \} = 1 $ for $ 0 \leq t \leq 1 $. If $ 0 < t < 1 $, then $ \eta ( t ) $ has a density function $ f ( t,x ) $. Obviously, $ f ( t,x ) = 0 $ for $ x \leq 0 $. If $ 0 < t < 1 $ and $ x > 0 $, then
$$ f ( t,x ) = { \frac{2x ^ {2} }{\sqrt {2 \pi t ^ {3} ( 1 - t ) ^ {3} } } } e ^ {- { {x ^ {2} } / {( 2t ( 1 - t ) ) } } } . $$
If $ 0 < t < u < 1 $, then the random variables $ \eta ( t ) $ and $ \eta ( u ) $ have a joint density function $ f ( t,x;u,y ) $. One finds that $ f ( t,x;u,y ) = 0 $ if $ x \leq 0 $ or $ y \leq 0 $. If $ 0 < t < u < 1 $ and $ x > 0 $, $ y > 0 $, then
$$ f ( t,x;u,y ) = $$
$$ = { \frac{\sqrt {8 \pi } xy }{\sqrt {t ^ {3} ( u - t ) ( 1 - u ) ^ {3} } } } \phi \left ( { \frac{x}{\sqrt t } } \right ) \phi \left ( { \frac{y}{\sqrt {1 - u } } } \right ) \times $$
$$ \times \left [ \phi \left ( { \frac{x - y }{\sqrt {u - t } } } \right ) - \phi \left ( { \frac{x + y }{\sqrt {u - t } } } \right ) \right ] , $$
where
$$ \phi ( x ) = { \frac{1}{\sqrt {2 \pi } } } e ^ { {{x ^ {2} } / 2 } } $$
is the normal density function (cf. Normal distribution; Density of a probability distribution). Since $ \{ {\eta ( t ) } : {0 \leq t \leq 1 } \} $ is a Markov process, the density functions $ f ( t,x ) $ and $ f ( t,x;u,y ) $ completely determine its finite-dimensional distributions. For various properties of the Brownian excursion process, see [a3], [a1], [a4].
The distributions of various functionals of the Brownian excursion $ \{ {\eta ( t ) } : {0 \leq t \leq 1 } \} $ frequently appear in probability theory. In particular, many limit distributions of the Bernoulli excursion $ \{ \eta _ {0} \dots \eta _ {2n } \} $ can be expressed simply as the distributions of certain functionals of the Brownian excursion. For example, if $ \delta _ {n} = \max ( \eta _ {0} , \dots, \eta _ {2n } ) $, then
$$ {\lim\limits } _ {n \rightarrow \infty } {\mathsf P} \left \{ { \frac{\delta _ {n} }{\sqrt {2n } } } \leq x \right \} = F ( x ) , $$
where
$$ F ( x ) = {\mathsf P} \left \{ \sup _ {0 \leq t \leq 1 } \eta ( t ) \leq x \right \} . $$
Explicitly,
$$ F ( x ) = \sum _ {j = - \infty } ^ \infty ( 1 - 4j ^ {2} x ^ {2} ) e ^ {- 2j ^ {2} x ^ {2} } = $$
$$ = { \frac{\sqrt 2 \pi ^ {5/2 } }{x ^ {3} } } \sum _ {j = 0 } ^ \infty j ^ {2} e ^ {- { {j ^ {2} \pi ^ {2} } / {( 2x ^ {2} ) } } } $$
for $ x > 0 $ and $ F ( x ) = 0 $ for $ x \leq 0 $.
References
[a1] | K.L. Chung, "Excursions in Brownian Motion" Arkiv für Math. , 14 (1976) pp. 157–179 |
[a2] | K. Itô, H.P. McKean, "Diffusion processes and their sample paths" , Springer (1965) |
[a3] | P. Lévy, "Processus stochastiques et mouvement Brownien" , Gauthier-Villars (1965) (Edition: Second) |
[a4] | L. Takács, "A Bernoulli excursion and its various applications" Adv. in Probability , 23 (1991) pp. 557–585 |
Brownian excursion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Brownian_excursion&oldid=46167