Difference between revisions of "Branching process with immigration"
(refs format) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | b0175801.png | ||
+ | $#A+1 = 43 n = 0 | ||
+ | $#C+1 = 43 : ~/encyclopedia/old_files/data/B017/B.0107580 Branching process with immigration | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
{{MSC|60J80}} | {{MSC|60J80}} | ||
Line 5: | Line 17: | ||
A model of a branching process (discrete-time or continuous-time, with one or several types of particles, etc.) in which new particles may appear not only as the products of division of the original particles, but also as a result of immigration from some "external source" . For instance, let | A model of a branching process (discrete-time or continuous-time, with one or several types of particles, etc.) in which new particles may appear not only as the products of division of the original particles, but also as a result of immigration from some "external source" . For instance, let | ||
− | + | $$ | |
+ | X _ {t,i } , Y _ {t} ,\ t = 0, 1 ,\dots ; \ i = 1, 2 \dots | ||
+ | $$ | ||
be independent random variables with generating functions | be independent random variables with generating functions | ||
− | + | $$ | |
+ | F (s) = \ | ||
+ | \sum _ {k = 0 } ^ \infty | ||
+ | {\mathsf P} \{ X _ {t,i } = k \} s ^ {k} , | ||
+ | $$ | ||
− | + | $$ | |
+ | G (s) = \sum _ {k = 0 } ^ \infty {\mathsf P} \{ Y _ {t} = k \} s ^ {k} , | ||
+ | $$ | ||
− | respectively; the branching [[Galton–Watson process|Galton–Watson process]] with immigration may be defined by the relations | + | respectively; the branching [[Galton–Watson process|Galton–Watson process]] with immigration may be defined by the relations $ \mu (0) = 0 $, |
+ | where $ \mu (t) $ | ||
+ | is the number of particles and | ||
− | + | $$ | |
+ | \mu (t + 1) = \ | ||
+ | X _ {t,1 } + \dots + | ||
+ | X _ {t, \mu (t) } + Y _ {t} ,\ \ | ||
+ | t=0, 1 ,\dots . | ||
+ | $$ | ||
− | Here, the variable | + | Here, the variable $ X _ {t,i} $ |
+ | is interpreted as the number of daughter particles of the $ i $- | ||
+ | th particle of the $ t $- | ||
+ | th generation, while the variable $ Y _ {t} $ | ||
+ | is interpreted as the number of the particles which have immigrated into the $ t $- | ||
+ | th generation. The generating functions | ||
− | + | $$ | |
+ | H _ {t} (s) = \ | ||
+ | {\mathsf E} \{ s ^ {\mu (t) } | ||
+ | \mid \mu (0) = 0 \} | ||
+ | $$ | ||
are given by the recurrence relations | are given by the recurrence relations | ||
− | + | $$ | |
+ | H _ {0} (s) = 1,\ \ | ||
+ | H _ {t + 1 } (s) = \ | ||
+ | G (s) H _ {t} (F (s)). | ||
+ | $$ | ||
− | The Markov chain | + | The Markov chain $ \mu (t) $ |
+ | corresponding to the Galton–Watson branching process with immigration is recurrent if $ {\mathsf E} X _ {t,i} < 1 $ | ||
+ | and $ {\mathsf E} \mathop{\rm ln} (1 + Y _ {t} ) < \infty $ | ||
+ | or $ {\mathsf E} X _ {t,i} = 1 $ | ||
+ | and $ B = {\mathsf D} X _ {t,i} > 2C = 2 {\mathsf E} Y _ {t} $, | ||
+ | and is transient if $ {\mathsf E} X _ {t,i} = 1 $ | ||
+ | and $ B < 2C $ | ||
+ | or $ {\mathsf E} X _ {t,i} > 1 $. | ||
+ | For the Markov chain $ \mu (t) $ | ||
+ | to be ergodic, i.e. for the limits | ||
− | + | $$ | |
+ | \lim\limits _ {t \rightarrow \infty } \ | ||
+ | {\mathsf P} \{ \mu (t) = k \} = p _ {k} $$ | ||
to exist and to satisfy | to exist and to satisfy | ||
− | + | $$ | |
+ | \sum _ {k = 0 } ^ \infty | ||
+ | p _ {k} = 1, | ||
+ | $$ | ||
it is necessary and sufficient {{Cite|FW}} that | it is necessary and sufficient {{Cite|FW}} that | ||
− | < | + | $$ |
+ | \int\limits _ { 0 } ^ { 1 } | ||
+ | |||
+ | \frac{1 - G (s) }{F (s) - s } | ||
+ | \ | ||
+ | ds < \infty . | ||
+ | $$ | ||
+ | |||
+ | This condition is met, in particular, if $ {\mathsf E} X _ {t,i} < 1 $ | ||
+ | and $ {\mathsf E} \mathop{\rm ln} (1 + Y _ {t} ) < \infty $. | ||
+ | If $ {\mathsf E} X _ {t,i} = 1 $, | ||
+ | $ B > 0 $, | ||
+ | $ C < \infty $, | ||
+ | then {{Cite|S}} | ||
− | + | $$ | |
+ | \lim\limits _ {t \rightarrow \infty } {\mathsf P} | ||
+ | \left \{ | ||
+ | \frac{2 \mu (t) }{Bt } | ||
+ | \leq x \right \} = \ | ||
+ | { | ||
+ | \frac{1}{\Gamma (2CB ^ {-1} ) } | ||
+ | } | ||
+ | \int\limits _ { 0 } ^ { x } | ||
+ | y ^ {2CB ^ {-1 } -1 } | ||
+ | e ^ {-y} dy,\ x \geq 0. | ||
+ | $$ | ||
− | + | If $ A = {\mathsf E} X _ {t,i} > 1 $ | |
+ | and $ {\mathsf E} \mathop{\rm ln} (1 + Y _ {t} ) < \infty $, | ||
+ | then there exists {{Cite|S2}} a sequence of numbers $ c _ {t} \downarrow 0 $, | ||
+ | $ c _ {t} / c _ {t+1} \rightarrow A $, | ||
+ | such that | ||
− | + | $$ | |
+ | {\mathsf P} \left \{ | ||
+ | \lim\limits _ {t \rightarrow \infty } \ | ||
+ | c _ {t} \mu (t) \ | ||
+ | \textrm{ exists } \textrm{ and } \ | ||
+ | \textrm{ is } \textrm{ positive } | ||
+ | \right \} = 1. | ||
+ | $$ | ||
− | + | In branching processes with immigration in which the immigration takes place at $ \mu (t) = 0 $ | |
+ | only, i.e. | ||
− | + | $$ | |
+ | \mu (t+1) = X _ {t,1} + \dots + X _ {t, \mu (t) } + \delta _ {0, \mu (t) } | ||
+ | Y _ {t} ,\ t=0, 1 \dots | ||
+ | $$ | ||
− | + | where $ \delta _ {ij} $ | |
+ | is the Kronecker symbol, the following relation is valid if $ {\mathsf E} X _ {t,i} = 1 $, | ||
+ | $ 1 < {\mathsf E} X _ {t,i} ^ { 2 } < \infty $ | ||
+ | and $ 0 < {\mathsf E} Y _ {t} < \infty $: | ||
− | + | $$ | |
+ | \lim\limits _ {t \rightarrow \infty } \ | ||
+ | {\mathsf P} \left \{ | ||
− | + | \frac{ \mathop{\rm ln} (1 + \mu (t)) }{ \mathop{\rm ln} t } | |
+ | \leq x | ||
+ | \right \} | ||
+ | = x,\ 0 \leq x \leq 1. | ||
+ | $$ | ||
====References==== | ====References==== |
Latest revision as of 06:29, 30 May 2020
2020 Mathematics Subject Classification: Primary: 60J80 [MSN][ZBL]
A model of a branching process (discrete-time or continuous-time, with one or several types of particles, etc.) in which new particles may appear not only as the products of division of the original particles, but also as a result of immigration from some "external source" . For instance, let
$$ X _ {t,i } , Y _ {t} ,\ t = 0, 1 ,\dots ; \ i = 1, 2 \dots $$
be independent random variables with generating functions
$$ F (s) = \ \sum _ {k = 0 } ^ \infty {\mathsf P} \{ X _ {t,i } = k \} s ^ {k} , $$
$$ G (s) = \sum _ {k = 0 } ^ \infty {\mathsf P} \{ Y _ {t} = k \} s ^ {k} , $$
respectively; the branching Galton–Watson process with immigration may be defined by the relations $ \mu (0) = 0 $, where $ \mu (t) $ is the number of particles and
$$ \mu (t + 1) = \ X _ {t,1 } + \dots + X _ {t, \mu (t) } + Y _ {t} ,\ \ t=0, 1 ,\dots . $$
Here, the variable $ X _ {t,i} $ is interpreted as the number of daughter particles of the $ i $- th particle of the $ t $- th generation, while the variable $ Y _ {t} $ is interpreted as the number of the particles which have immigrated into the $ t $- th generation. The generating functions
$$ H _ {t} (s) = \ {\mathsf E} \{ s ^ {\mu (t) } \mid \mu (0) = 0 \} $$
are given by the recurrence relations
$$ H _ {0} (s) = 1,\ \ H _ {t + 1 } (s) = \ G (s) H _ {t} (F (s)). $$
The Markov chain $ \mu (t) $ corresponding to the Galton–Watson branching process with immigration is recurrent if $ {\mathsf E} X _ {t,i} < 1 $ and $ {\mathsf E} \mathop{\rm ln} (1 + Y _ {t} ) < \infty $ or $ {\mathsf E} X _ {t,i} = 1 $ and $ B = {\mathsf D} X _ {t,i} > 2C = 2 {\mathsf E} Y _ {t} $, and is transient if $ {\mathsf E} X _ {t,i} = 1 $ and $ B < 2C $ or $ {\mathsf E} X _ {t,i} > 1 $. For the Markov chain $ \mu (t) $ to be ergodic, i.e. for the limits
$$ \lim\limits _ {t \rightarrow \infty } \ {\mathsf P} \{ \mu (t) = k \} = p _ {k} $$
to exist and to satisfy
$$ \sum _ {k = 0 } ^ \infty p _ {k} = 1, $$
it is necessary and sufficient [FW] that
$$ \int\limits _ { 0 } ^ { 1 } \frac{1 - G (s) }{F (s) - s } \ ds < \infty . $$
This condition is met, in particular, if $ {\mathsf E} X _ {t,i} < 1 $ and $ {\mathsf E} \mathop{\rm ln} (1 + Y _ {t} ) < \infty $. If $ {\mathsf E} X _ {t,i} = 1 $, $ B > 0 $, $ C < \infty $, then [S]
$$ \lim\limits _ {t \rightarrow \infty } {\mathsf P} \left \{ \frac{2 \mu (t) }{Bt } \leq x \right \} = \ { \frac{1}{\Gamma (2CB ^ {-1} ) } } \int\limits _ { 0 } ^ { x } y ^ {2CB ^ {-1 } -1 } e ^ {-y} dy,\ x \geq 0. $$
If $ A = {\mathsf E} X _ {t,i} > 1 $ and $ {\mathsf E} \mathop{\rm ln} (1 + Y _ {t} ) < \infty $, then there exists [S2] a sequence of numbers $ c _ {t} \downarrow 0 $, $ c _ {t} / c _ {t+1} \rightarrow A $, such that
$$ {\mathsf P} \left \{ \lim\limits _ {t \rightarrow \infty } \ c _ {t} \mu (t) \ \textrm{ exists } \textrm{ and } \ \textrm{ is } \textrm{ positive } \right \} = 1. $$
In branching processes with immigration in which the immigration takes place at $ \mu (t) = 0 $ only, i.e.
$$ \mu (t+1) = X _ {t,1} + \dots + X _ {t, \mu (t) } + \delta _ {0, \mu (t) } Y _ {t} ,\ t=0, 1 \dots $$
where $ \delta _ {ij} $ is the Kronecker symbol, the following relation is valid if $ {\mathsf E} X _ {t,i} = 1 $, $ 1 < {\mathsf E} X _ {t,i} ^ { 2 } < \infty $ and $ 0 < {\mathsf E} Y _ {t} < \infty $:
$$ \lim\limits _ {t \rightarrow \infty } \ {\mathsf P} \left \{ \frac{ \mathop{\rm ln} (1 + \mu (t)) }{ \mathop{\rm ln} t } \leq x \right \} = x,\ 0 \leq x \leq 1. $$
References
[Z] | A.M. Zubkov, "Life-like periods of a branching process with immigration" Theory Probab. Appl. , 17 : 1 (1972) pp. 174–183 Teor. Veroyatnost. i Primenen. , 17 : 1 (1972) pp. 179–188 MR0300351 Zbl 0267.60084 |
[P] | A.G. Pakes, "Further results on the critical Galton–Watson process with immigration" J. Austral. Math. Soc. , 13 : 3 (1972) pp. 277–290 MR0312585 Zbl 0235.60078 |
[FW] | J.H. Foster, J.A. Williamson, "Limit theorems for the Galton–Watson process with time-dependent immigration" Z. Wahrsch. Verw. Geb. , 20 (1971) pp. 227–235 MR0305494 Zbl 0219.60069 Zbl 0212.19702 |
[S] | E. Seneta, "An explicit limit theorem for the critical Galton–Watson process with immigration" J. Roy. Statist. Soc. Ser. B , 32 : 1 (1970) pp. 149–152 MR0266320 Zbl 0198.52002 |
[S2] | E. Seneta, "On the supercritical Galton–Watson process with immigration" Math. Biosci. , 7 (1970) pp. 9–14 MR0270460 Zbl 0209.48804 |
[F] | J.H. Foster, "A limit theorem for a branching process with state-dependent immigration" Ann. of Math. Statist. , 42 : 5 (1971) pp. 1773–1776 MR0348854 Zbl 0245.60063 |
Comments
Additional references may be found in the article Branching process.
Branching process with immigration. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Branching_process_with_immigration&oldid=46155