Difference between revisions of "Branching process with diffusion"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b0175701.png | ||
+ | $#A+1 = 34 n = 0 | ||
+ | $#C+1 = 34 : ~/encyclopedia/old_files/data/B017/B.0107570 Branching process with diffusion | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A model of a branching process in which the reproducing particles diffuse in some domain $ G $. | |
+ | Let the domain $ G $ | ||
+ | be $ r $- | ||
+ | dimensional, with an absorbing boundary $ \partial G $, | ||
+ | and let the particles in the domain itself execute mutually independent Brownian motions. Each particle in $ G $ | ||
+ | is independently converted, within a time $ \Delta t $, | ||
+ | into $ n $ | ||
+ | particles with a probability of $ p _ {n} \Delta t + o( \Delta t ) $, | ||
+ | $ n \neq 1 $, | ||
+ | $ \Delta t \rightarrow 0 $. | ||
+ | Let the daughter particles begin their independent evolution from the point of their genesis. Let | ||
− | + | $$ | |
+ | f (s) = \ | ||
+ | \sum _ {n = 0 } ^ \infty | ||
+ | p _ {n} s ^ {n} | ||
+ | $$ | ||
+ | |||
+ | be the generating function of $ \{ p _ {n} \} $, | ||
+ | let $ p _ {1} = - \sum _ {n \neq 1 } p _ {n} $, | ||
+ | and let $ \mu _ {x,t} (A) $ | ||
+ | be the number of particles in a set $ A \subseteq G $ | ||
+ | at the moment $ t $ | ||
+ | if there initially was one particle at the point $ x \in G $. | ||
+ | The generating functional | ||
+ | |||
+ | $$ | ||
+ | H (t; x, s( \cdot )) = \ | ||
+ | {\mathsf E} \mathop{\rm exp} | ||
+ | \left [ \int\limits _ { G } \mathop{\rm ln} s (y) | ||
+ | \mu _ {x,t} (dy) \right ] | ||
+ | $$ | ||
satisfies the quasi-linear parabolic equation | satisfies the quasi-linear parabolic equation | ||
− | + | $$ | |
+ | \sum _ {i = 1 } ^ { r } | ||
+ | |||
+ | \frac{\partial ^ {2} H }{\partial x _ {i} ^ {2} } | ||
+ | + | ||
+ | f (H) = \ | ||
+ | |||
+ | \frac{\partial H }{\partial t } | ||
+ | |||
+ | $$ | ||
with the initial condition | with the initial condition | ||
− | + | $$ | |
+ | H (0, x, s( \cdot )) = s (x) | ||
+ | $$ | ||
and the boundary condition | and the boundary condition | ||
− | + | $$ | |
+ | H (t, x, s ( \cdot )) | ||
+ | \mid _ {x \rightarrow \partial G } = 0 . | ||
+ | $$ | ||
+ | |||
+ | Denote by $ 0 < \lambda _ {1} < \lambda _ {2} \leq \lambda _ {3} \leq \dots $ | ||
+ | the eigen values, and let $ \phi _ {1} (x) > 0 $ | ||
+ | be the eigen function of the problem | ||
− | + | $$ | |
+ | \sum _ {i = 1 } ^ { r } | ||
− | + | \frac{\partial ^ {2} \phi }{\partial x _ {i} ^ {2} } | |
+ | + | ||
+ | \lambda \phi = 0,\ \ | ||
+ | \phi (x) \mid _ {x \rightarrow \partial G } = 0, | ||
+ | $$ | ||
− | corresponding to | + | corresponding to $ \lambda _ {1} $. |
+ | As $ t \rightarrow \infty $ | ||
+ | the asymptotic relation | ||
− | + | $$ | |
+ | {\mathsf E} \mu _ {x,t} (G) \approx \ | ||
+ | K e ^ {(a - \lambda _ {1} ) t } | ||
+ | \phi _ {1} (x) | ||
+ | $$ | ||
− | holds. For this reason the problem is said to be subcritical if < | + | holds. For this reason the problem is said to be subcritical if $ a < \lambda _ {1} $, |
+ | critical if $ a = \lambda _ {1} $ | ||
+ | and supercritical if $ a > \lambda _ {1} $. | ||
+ | If $ a \leq \lambda _ {1} $, | ||
+ | a branching process with diffusion dies out with probability one, while if $ a > \lambda _ {1} $, | ||
+ | both the probability of dying out and the probability of the event $ \mu _ {x,t} (G) \rightarrow \infty $ | ||
+ | as $ t \rightarrow \infty $ | ||
+ | will in general be positive. Depending on their criticality, branching processes with diffusion obey limit theorems analogous to those valid for branching processes without diffusion. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.A. [B.A. Sevast'yanov] Sewastjanow, "Verzweigungsprozesse" , Akad. Wissenschaft. DDR (1974) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.A. [B.A. Sevast'yanov] Sewastjanow, "Verzweigungsprozesse" , Akad. Wissenschaft. DDR (1974) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Additional references can be found in the article [[Branching process|Branching process]]. | Additional references can be found in the article [[Branching process|Branching process]]. |
Latest revision as of 06:29, 30 May 2020
A model of a branching process in which the reproducing particles diffuse in some domain $ G $.
Let the domain $ G $
be $ r $-
dimensional, with an absorbing boundary $ \partial G $,
and let the particles in the domain itself execute mutually independent Brownian motions. Each particle in $ G $
is independently converted, within a time $ \Delta t $,
into $ n $
particles with a probability of $ p _ {n} \Delta t + o( \Delta t ) $,
$ n \neq 1 $,
$ \Delta t \rightarrow 0 $.
Let the daughter particles begin their independent evolution from the point of their genesis. Let
$$ f (s) = \ \sum _ {n = 0 } ^ \infty p _ {n} s ^ {n} $$
be the generating function of $ \{ p _ {n} \} $, let $ p _ {1} = - \sum _ {n \neq 1 } p _ {n} $, and let $ \mu _ {x,t} (A) $ be the number of particles in a set $ A \subseteq G $ at the moment $ t $ if there initially was one particle at the point $ x \in G $. The generating functional
$$ H (t; x, s( \cdot )) = \ {\mathsf E} \mathop{\rm exp} \left [ \int\limits _ { G } \mathop{\rm ln} s (y) \mu _ {x,t} (dy) \right ] $$
satisfies the quasi-linear parabolic equation
$$ \sum _ {i = 1 } ^ { r } \frac{\partial ^ {2} H }{\partial x _ {i} ^ {2} } + f (H) = \ \frac{\partial H }{\partial t } $$
with the initial condition
$$ H (0, x, s( \cdot )) = s (x) $$
and the boundary condition
$$ H (t, x, s ( \cdot )) \mid _ {x \rightarrow \partial G } = 0 . $$
Denote by $ 0 < \lambda _ {1} < \lambda _ {2} \leq \lambda _ {3} \leq \dots $ the eigen values, and let $ \phi _ {1} (x) > 0 $ be the eigen function of the problem
$$ \sum _ {i = 1 } ^ { r } \frac{\partial ^ {2} \phi }{\partial x _ {i} ^ {2} } + \lambda \phi = 0,\ \ \phi (x) \mid _ {x \rightarrow \partial G } = 0, $$
corresponding to $ \lambda _ {1} $. As $ t \rightarrow \infty $ the asymptotic relation
$$ {\mathsf E} \mu _ {x,t} (G) \approx \ K e ^ {(a - \lambda _ {1} ) t } \phi _ {1} (x) $$
holds. For this reason the problem is said to be subcritical if $ a < \lambda _ {1} $, critical if $ a = \lambda _ {1} $ and supercritical if $ a > \lambda _ {1} $. If $ a \leq \lambda _ {1} $, a branching process with diffusion dies out with probability one, while if $ a > \lambda _ {1} $, both the probability of dying out and the probability of the event $ \mu _ {x,t} (G) \rightarrow \infty $ as $ t \rightarrow \infty $ will in general be positive. Depending on their criticality, branching processes with diffusion obey limit theorems analogous to those valid for branching processes without diffusion.
References
[1] | B.A. [B.A. Sevast'yanov] Sewastjanow, "Verzweigungsprozesse" , Akad. Wissenschaft. DDR (1974) (Translated from Russian) |
Comments
Additional references can be found in the article Branching process.
Branching process with diffusion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Branching_process_with_diffusion&oldid=46154