Namespaces
Variants
Actions

Difference between revisions of "Blaschke product"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
b0166301.png
 +
$#A+1 = 45 n = 3
 +
$#C+1 = 45 : ~/encyclopedia/old_files/data/B016/B.0106630 Blaschke product,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''Blaschke function''
 
''Blaschke function''
  
A regular analytic function of a complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b0166301.png" />, defined in the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b0166302.png" /> by the finite or infinite product
+
A regular analytic function of a complex variable $  z $,  
 +
defined in the unit disc $  K = \{ {z } : {| z | < 1 } \} $
 +
by the finite or infinite product
 +
 
 +
$$ \tag{* }
 +
B(z)  = z  ^ {n}
 +
\prod _ { k }
 +
 
 +
\frac{| a _ {k} | }{a _ {k} }
 +
 
 +
\frac{a _ {k} -z }{1- \overline{a}\; _ {k} z }
 +
,
 +
$$
 +
 
 +
where  $  n $
 +
is a non-negative integer, and  $  \{ a _ {k} \} $,
 +
$  k = 1, 2 \dots $
 +
is a sequence of points  $  a _ {k} \in K \setminus  \{ 0 \} $
 +
such that the product on the right-hand side of (*) converges (the convergence condition is necessary only for an infinite product). The Blaschke product was introduced by W. Blaschke [[#References|[1]]], who proved the following theorem: A sequence  $  \{ a _ {k} \} $
 +
of points  $  a _ {k} \in K \setminus  \{ 0 \} $
 +
defines a function of the type (*) if and only if the series  $  \sum _ {k} (1 - | a _ {k} | ) $
 +
is convergent. Each factor of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b0166303.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$
 +
b _ {k} (z) = \
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b0166304.png" /> is a non-negative integer, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b0166305.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b0166306.png" /> is a sequence of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b0166307.png" /> such that the product on the right-hand side of (*) converges (the convergence condition is necessary only for an infinite product). The Blaschke product was introduced by W. Blaschke [[#References|[1]]], who proved the following theorem: A sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b0166308.png" /> of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b0166309.png" /> defines a function of the type (*) if and only if the series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663010.png" /> is convergent. Each factor of the form
+
\frac{| a _ {k} | }{a _ {k} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663011.png" /></td> </tr></table>
+
\frac{a _ {k} -z }{1- \overline{a}\; _ {k} z }
 +
,
 +
$$
  
called the Blaschke factor for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663012.png" />, defines a univalent conformal mapping of the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663013.png" /> onto itself, which takes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663014.png" /> to zero, with the normalization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663015.png" />. The factors of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663016.png" /> may be interpreted as Blaschke factors which correspond to the zero <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663017.png" /> with the normalization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663018.png" />. The definition of Blaschke factors and Blaschke products is readily carried over to a disc of arbitrary radius, and also to an arbitrary simply-connected domain, which is conformally equivalent to a disc.
+
called the Blaschke factor for $  a _ {k} $,  
 +
defines a univalent conformal mapping of the disc $  K $
 +
onto itself, which takes $  z = a _ {k} $
 +
to zero, with the normalization b _ {k} (-a _ {k} / | a _ {k} | ) =1 $.  
 +
The factors of the form $  b _ {0} (z) = z $
 +
may be interpreted as Blaschke factors which correspond to the zero $  z = 0 $
 +
with the normalization $  b _ {0} (1) = 1 $.  
 +
The definition of Blaschke factors and Blaschke products is readily carried over to a disc of arbitrary radius, and also to an arbitrary simply-connected domain, which is conformally equivalent to a disc.
  
The sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663019.png" /> (with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663020.png" /> zeros), which is usually written out in non-decreasing order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663021.png" />, is the sequence of all zeros of the Blaschke product (*) (each zero is written down as many times as its multiplicity). Thus, Blaschke's theorem describes the sequences of zeros of all possible Blaschke products. The product (*) can be regarded as the simplest bounded holomorphic function in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663022.png" /> with a prescribed sequence of zeros. It converges absolutely and uniformly inside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663023.png" />, represents a bounded holomorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663024.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663025.png" />, with angular boundary values of modulus one almost everywhere on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663026.png" />. A necessary and sufficient condition for a bounded holomorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663027.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663029.png" />, to be a Blaschke product, is
+
The sequence $  0 \dots 0, a _ {1} , a _ {2} ,\dots $(
 +
with $  n $
 +
zeros), which is usually written out in non-decreasing order of $  | a _ {k} | $,  
 +
is the sequence of all zeros of the Blaschke product (*) (each zero is written down as many times as its multiplicity). Thus, Blaschke's theorem describes the sequences of zeros of all possible Blaschke products. The product (*) can be regarded as the simplest bounded holomorphic function in the disc $  K $
 +
with a prescribed sequence of zeros. It converges absolutely and uniformly inside $  K $,  
 +
represents a bounded holomorphic function $  | B(z) | < 1 $
 +
in $  K $,  
 +
with angular boundary values of modulus one almost everywhere on $  \partial  K $.  
 +
A necessary and sufficient condition for a bounded holomorphic function $  f(z) $
 +
in $  K $,  
 +
$  | f(z) | < 1 $,  
 +
to be a Blaschke product, is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663030.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {r \rightarrow 1 } \
 +
\int\limits _ { 0 } ^ { {2 }  \pi }
 +
\mathop{\rm ln}  | f (re ^ {i \theta } ) |
 +
d \theta  = 0.
 +
$$
  
Blaschke products may be used to give a product representation of important classes of holomorphic functions in the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663031.png" />. Thus, a proof was given for the following theorem of Blaschke: A sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663032.png" /> of points in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663033.png" /> is the sequence of all zeros of some bounded holomorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663035.png" />, in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663036.png" /> if and only if the series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663037.png" /> is convergent. Moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663038.png" /> can be represented as a product
+
Blaschke products may be used to give a product representation of important classes of holomorphic functions in the unit disc $  K $.  
 +
Thus, a proof was given for the following theorem of Blaschke: A sequence $  \{ a _ {k} \} $
 +
of points in the disc $  K $
 +
is the sequence of all zeros of some bounded holomorphic function $  f(z) $,  
 +
$  | f(z) | < 1 $,  
 +
in $  K $
 +
if and only if the series $  \sum _ {k} (1 - | a _ {k} | ) $
 +
is convergent. Moreover, $  f(z) $
 +
can be represented as a product
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663039.png" /></td> </tr></table>
+
$$
 +
f(z) = B _ {f} (z) g (z),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663040.png" /> is the Blaschke product constructed with the zeros <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663041.png" /> of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663042.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663043.png" /> is a zero-free holomorphic function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663045.png" />, which can be represented relatively simply using an integral formula. Apart from the bounded functions, similar product representations may be constructed for functions of bounded form and for [[Hardy classes|Hardy classes]] [[#References|[2]]]–[[#References|[4]]] (cf. [[Function of bounded form|Function of bounded form]]).
+
where $  B _ {f} (z) $
 +
is the Blaschke product constructed with the zeros $  \{ a _ {k} \} $
 +
of the function $  f(z) $,  
 +
while $  g(z) $
 +
is a zero-free holomorphic function in $  K $,  
 +
$  | g(z) | \leq  1 $,  
 +
which can be represented relatively simply using an integral formula. Apart from the bounded functions, similar product representations may be constructed for functions of bounded form and for [[Hardy classes|Hardy classes]] [[#References|[2]]]–[[#References|[4]]] (cf. [[Function of bounded form|Function of bounded form]]).
  
 
The above theory was considerably generalized by M.M. Dzhrbashyan [[#References|[5]]], [[#References|[6]]], who constructed infinite products of a more general nature, which are suitable for the factorization of much larger classes of meromorphic functions. A solution was also found for the problem of constructing analogues of Blaschke products and Blaschke's theorem for doubly-connected domains [[#References|[7]]] and, in general, finitely-connected [[#References|[8]]] domains. The solution of the problem of constructing suitable analogues of the Blaschke product for holomorphic functions of several complex variables is rendered very difficult by the fact that the zeros of such functions cannot be isolated.
 
The above theory was considerably generalized by M.M. Dzhrbashyan [[#References|[5]]], [[#References|[6]]], who constructed infinite products of a more general nature, which are suitable for the factorization of much larger classes of meromorphic functions. A solution was also found for the problem of constructing analogues of Blaschke products and Blaschke's theorem for doubly-connected domains [[#References|[7]]] and, in general, finitely-connected [[#References|[8]]] domains. The solution of the problem of constructing suitable analogues of the Blaschke product for holomorphic functions of several complex variables is rendered very difficult by the fact that the zeros of such functions cannot be isolated.
Line 25: Line 100:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W. Blaschke,  "Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen"  ''Berichte Math.-Phys. Kl., Sächs. Gesell. der Wiss. Leipzig'' , '''67'''  (1915)  pp. 194–200</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.I. [I.I. Privalov] Priwalow,  "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft.  (1956)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R. Nevanilinna,  "Analytic functions" , Springer  (1970)  (Translated from German)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E.F. Collingwood,  A.J. Lohwater,  "The theory of cluster sets" , Cambridge Univ. Press  (1966)  pp. Chapt. 1;6</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  M.M. Dzhrbashyan,  "Integral transforms and representation of functions in the complex domain" , Moscow  (1966)  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  M.M. Dzhrbashyan,  "The theory of factorization and boundary properties of functions meromorphic in a disc"  ''Russian Math. Surveys'' , '''28''' :  4  (1973)  pp. 1–12  ''Uspekhi Mat. Nauk'' , '''28''' :  4  (1973)  pp. 3–14</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  S.A. Kas'yanyuk,  "On functions of classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663047.png" /> in an annulus"  ''Mat. Sb.'' , '''42 (84)''' :  3  (1957)  pp. 301–326</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  P.M. Tamrazov,  "Conformal-metric theory of doubly connected domains and the generalized Blaschke product"  ''Soviet Math. Dokl.'' , '''6''' :  2  (1965)  pp. 432–435  ''Dokl. Akad. Nauk SSSR'' , '''161''' :  2  (1965)  pp. 308–311</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W. Blaschke,  "Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen"  ''Berichte Math.-Phys. Kl., Sächs. Gesell. der Wiss. Leipzig'' , '''67'''  (1915)  pp. 194–200</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.I. [I.I. Privalov] Priwalow,  "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft.  (1956)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R. Nevanilinna,  "Analytic functions" , Springer  (1970)  (Translated from German)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E.F. Collingwood,  A.J. Lohwater,  "The theory of cluster sets" , Cambridge Univ. Press  (1966)  pp. Chapt. 1;6</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  M.M. Dzhrbashyan,  "Integral transforms and representation of functions in the complex domain" , Moscow  (1966)  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  M.M. Dzhrbashyan,  "The theory of factorization and boundary properties of functions meromorphic in a disc"  ''Russian Math. Surveys'' , '''28''' :  4  (1973)  pp. 1–12  ''Uspekhi Mat. Nauk'' , '''28''' :  4  (1973)  pp. 3–14</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  S.A. Kas'yanyuk,  "On functions of classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016630/b01663047.png" /> in an annulus"  ''Mat. Sb.'' , '''42 (84)''' :  3  (1957)  pp. 301–326</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  P.M. Tamrazov,  "Conformal-metric theory of doubly connected domains and the generalized Blaschke product"  ''Soviet Math. Dokl.'' , '''6''' :  2  (1965)  pp. 432–435  ''Dokl. Akad. Nauk SSSR'' , '''161''' :  2  (1965)  pp. 308–311</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 10:59, 29 May 2020


Blaschke function

A regular analytic function of a complex variable $ z $, defined in the unit disc $ K = \{ {z } : {| z | < 1 } \} $ by the finite or infinite product

$$ \tag{* } B(z) = z ^ {n} \prod _ { k } \frac{| a _ {k} | }{a _ {k} } \frac{a _ {k} -z }{1- \overline{a}\; _ {k} z } , $$

where $ n $ is a non-negative integer, and $ \{ a _ {k} \} $, $ k = 1, 2 \dots $ is a sequence of points $ a _ {k} \in K \setminus \{ 0 \} $ such that the product on the right-hand side of (*) converges (the convergence condition is necessary only for an infinite product). The Blaschke product was introduced by W. Blaschke [1], who proved the following theorem: A sequence $ \{ a _ {k} \} $ of points $ a _ {k} \in K \setminus \{ 0 \} $ defines a function of the type (*) if and only if the series $ \sum _ {k} (1 - | a _ {k} | ) $ is convergent. Each factor of the form

$$ b _ {k} (z) = \ \frac{| a _ {k} | }{a _ {k} } \frac{a _ {k} -z }{1- \overline{a}\; _ {k} z } , $$

called the Blaschke factor for $ a _ {k} $, defines a univalent conformal mapping of the disc $ K $ onto itself, which takes $ z = a _ {k} $ to zero, with the normalization $ b _ {k} (-a _ {k} / | a _ {k} | ) =1 $. The factors of the form $ b _ {0} (z) = z $ may be interpreted as Blaschke factors which correspond to the zero $ z = 0 $ with the normalization $ b _ {0} (1) = 1 $. The definition of Blaschke factors and Blaschke products is readily carried over to a disc of arbitrary radius, and also to an arbitrary simply-connected domain, which is conformally equivalent to a disc.

The sequence $ 0 \dots 0, a _ {1} , a _ {2} ,\dots $( with $ n $ zeros), which is usually written out in non-decreasing order of $ | a _ {k} | $, is the sequence of all zeros of the Blaschke product (*) (each zero is written down as many times as its multiplicity). Thus, Blaschke's theorem describes the sequences of zeros of all possible Blaschke products. The product (*) can be regarded as the simplest bounded holomorphic function in the disc $ K $ with a prescribed sequence of zeros. It converges absolutely and uniformly inside $ K $, represents a bounded holomorphic function $ | B(z) | < 1 $ in $ K $, with angular boundary values of modulus one almost everywhere on $ \partial K $. A necessary and sufficient condition for a bounded holomorphic function $ f(z) $ in $ K $, $ | f(z) | < 1 $, to be a Blaschke product, is

$$ \lim\limits _ {r \rightarrow 1 } \ \int\limits _ { 0 } ^ { {2 } \pi } \mathop{\rm ln} | f (re ^ {i \theta } ) | d \theta = 0. $$

Blaschke products may be used to give a product representation of important classes of holomorphic functions in the unit disc $ K $. Thus, a proof was given for the following theorem of Blaschke: A sequence $ \{ a _ {k} \} $ of points in the disc $ K $ is the sequence of all zeros of some bounded holomorphic function $ f(z) $, $ | f(z) | < 1 $, in $ K $ if and only if the series $ \sum _ {k} (1 - | a _ {k} | ) $ is convergent. Moreover, $ f(z) $ can be represented as a product

$$ f(z) = B _ {f} (z) g (z), $$

where $ B _ {f} (z) $ is the Blaschke product constructed with the zeros $ \{ a _ {k} \} $ of the function $ f(z) $, while $ g(z) $ is a zero-free holomorphic function in $ K $, $ | g(z) | \leq 1 $, which can be represented relatively simply using an integral formula. Apart from the bounded functions, similar product representations may be constructed for functions of bounded form and for Hardy classes [2][4] (cf. Function of bounded form).

The above theory was considerably generalized by M.M. Dzhrbashyan [5], [6], who constructed infinite products of a more general nature, which are suitable for the factorization of much larger classes of meromorphic functions. A solution was also found for the problem of constructing analogues of Blaschke products and Blaschke's theorem for doubly-connected domains [7] and, in general, finitely-connected [8] domains. The solution of the problem of constructing suitable analogues of the Blaschke product for holomorphic functions of several complex variables is rendered very difficult by the fact that the zeros of such functions cannot be isolated.

References

[1] W. Blaschke, "Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen" Berichte Math.-Phys. Kl., Sächs. Gesell. der Wiss. Leipzig , 67 (1915) pp. 194–200
[2] I.I. [I.I. Privalov] Priwalow, "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)
[3] R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German)
[4] E.F. Collingwood, A.J. Lohwater, "The theory of cluster sets" , Cambridge Univ. Press (1966) pp. Chapt. 1;6
[5] M.M. Dzhrbashyan, "Integral transforms and representation of functions in the complex domain" , Moscow (1966) (In Russian)
[6] M.M. Dzhrbashyan, "The theory of factorization and boundary properties of functions meromorphic in a disc" Russian Math. Surveys , 28 : 4 (1973) pp. 1–12 Uspekhi Mat. Nauk , 28 : 4 (1973) pp. 3–14
[7] S.A. Kas'yanyuk, "On functions of classes and in an annulus" Mat. Sb. , 42 (84) : 3 (1957) pp. 301–326
[8] P.M. Tamrazov, "Conformal-metric theory of doubly connected domains and the generalized Blaschke product" Soviet Math. Dokl. , 6 : 2 (1965) pp. 432–435 Dokl. Akad. Nauk SSSR , 161 : 2 (1965) pp. 308–311

Comments

Some standard references for Blaschke products and related subjects are [a1], [a2] and [a3].

References

[a1] P.L. Duren, "Theory of spaces" , Acad. Press (1970)
[a2] W. Rudin, "Real and complex analysis" , McGraw-Hill (1974) pp. 24
[a3] J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981) pp. 40
How to Cite This Entry:
Blaschke product. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Blaschke_product&oldid=46083
This article was adapted from an original article by P.M. Tamrazov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article