Namespaces
Variants
Actions

Difference between revisions of "Bilinear integral form"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
b0162701.png
 +
$#A+1 = 8 n = 0
 +
$#C+1 = 8 : ~/encyclopedia/old_files/data/B016/B.0106270 Bilinear integral form
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
The double integral
 
The double integral
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016270/b0162701.png" /></td> </tr></table>
+
$$
 +
J ( \phi , \psi ) =
 +
\int\limits _ { a } ^ { b }  \int\limits _ { a } ^ { b }  K(x, s)
 +
\phi (x) \overline{ {\psi (s) }}\; dx  ds ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016270/b0162702.png" /> is a given (usually complex-valued) square-integrable function of real variables, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016270/b0162703.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016270/b0162704.png" /> are arbitrary (also complex-valued) square-integrable functions, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016270/b0162705.png" /> is the complex conjugate function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016270/b0162706.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016270/b0162707.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016270/b0162708.png" /> is said to be a quadratic integral form.
+
where $  K(x, s) $
 +
is a given (usually complex-valued) square-integrable function of real variables, and $  \phi (x) $,  
 +
$  \psi (x) $
 +
are arbitrary (also complex-valued) square-integrable functions, while $  \overline{ {\psi (s) }}\; $
 +
is the complex conjugate function of $  \psi (s) $.  
 +
If $  \psi (s) = \phi (s) $,
 +
$  J( \phi , \phi ) $
 +
is said to be a quadratic integral form.

Latest revision as of 10:59, 29 May 2020


The double integral

$$ J ( \phi , \psi ) = \int\limits _ { a } ^ { b } \int\limits _ { a } ^ { b } K(x, s) \phi (x) \overline{ {\psi (s) }}\; dx ds , $$

where $ K(x, s) $ is a given (usually complex-valued) square-integrable function of real variables, and $ \phi (x) $, $ \psi (x) $ are arbitrary (also complex-valued) square-integrable functions, while $ \overline{ {\psi (s) }}\; $ is the complex conjugate function of $ \psi (s) $. If $ \psi (s) = \phi (s) $, $ J( \phi , \phi ) $ is said to be a quadratic integral form.

How to Cite This Entry:
Bilinear integral form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bilinear_integral_form&oldid=46060
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article