Difference between revisions of "Bieberbach-Eilenberg functions"
Ulf Rehmann (talk | contribs) m (moved Bieberbach–Eilenberg functions to Bieberbach-Eilenberg functions: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | b0161601.png | ||
| + | $#A+1 = 70 n = 0 | ||
| + | $#C+1 = 70 : ~/encyclopedia/old_files/data/B016/B.0106160 Bieberbach\ANDEilenberg functions | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | < | + | ''in the disc $ | z | < 1 $'' |
| + | |||
| + | The class $ R $ | ||
| + | of functions $ f(z) $, | ||
| + | regular in the disc $ | z | < 1 $, | ||
| + | which have an expansion of the form | ||
| + | |||
| + | $$ \tag{1 } | ||
| + | f(z) = c _ {1} z + \dots + c _ {n} z ^ {n} + \dots | ||
| + | $$ | ||
and which satisfy the condition | and which satisfy the condition | ||
| − | < | + | $$ |
| + | f(z _ {1} ) f (z _ {2} ) \neq 1 ,\ \ | ||
| + | | z _ {1} | < 1,\ | z _ {2} | < 1. | ||
| + | $$ | ||
| + | |||
| + | This class of functions is a natural extension of the class $ B $ | ||
| + | of functions $ f(z) $, | ||
| + | regular in the disc $ | z | < 1 $, | ||
| + | with an expansion (1) and such that $ | f(z) | < 1 $ | ||
| + | for $ | z | < 1 $. | ||
| + | The class of univalent functions (cf. [[Univalent function|Univalent function]]) in $ R $ | ||
| + | is denoted by $ \widetilde{R} $. | ||
| + | The functions in $ R $ | ||
| + | were named after L. Bieberbach [[#References|[1]]], who showed that for $ f(z) \in \widetilde{R} $ | ||
| + | the inequality | ||
| − | + | $$ \tag{2 } | |
| + | | c _ {1} | \leq 1 | ||
| + | $$ | ||
| − | + | is valid, while equality holds only for the function $ f(z) = e ^ {i \theta } z $, | |
| + | where $ \theta $ | ||
| + | is real, and after S. Eilenberg [[#References|[2]]], who proved that the inequality (2) is valid for the whole class $ R $. | ||
| + | It was shown by W. Rogosinski [[#References|[3]]] that every function in $ R $ | ||
| + | is subordinate (cf. [[Subordination principle|Subordination principle]]) to some function in $ \widetilde{R} $. | ||
| + | Inequality (2) yields the following sharp inequality for $ f(z) \in R $: | ||
| − | + | $$ \tag{3 } | |
| + | | f ^ { \prime } (z) | \leq \ | ||
| − | + | \frac{| 1 - f ^ {2} (z) | }{1- | z | ^ {2} } | |
| + | ,\ \ | ||
| + | | z | < 1. | ||
| + | $$ | ||
| − | The following bound on the modulus of a function in | + | The following bound on the modulus of a function in $ R $ |
| + | has been obtained: If $ f(z) \in R $, | ||
| + | then | ||
| − | + | $$ \tag{4 } | |
| + | | f(z) | \leq | ||
| + | \frac{r}{(1-r ^ {2} ) ^ {1/2} } | ||
| + | ,\ \ | ||
| + | | z | = r ,\ 0 < r < 1, | ||
| + | $$ | ||
| − | and (4) becomes an equality only for the functions | + | and (4) becomes an equality only for the functions $ \pm f(ze ^ {i \theta } ; r) $, |
| + | where $ \theta $ | ||
| + | is real and | ||
| − | + | $$ | |
| + | f (z; r) = \ | ||
| − | + | \frac{(1 - r ^ {2} ) ^ {1/2} z }{1 + irz } | |
| + | . | ||
| + | $$ | ||
| − | + | The method of the extremal metric (cf. [[Extremal metric, method of the|Extremal metric, method of the]]) provided the solution of the problem of the maximum and minimum of $ | f(z) | $ | |
| + | in the class $ \widetilde{R} (c) $ | ||
| + | of functions in $ \widetilde{R} $ | ||
| + | with a fixed value $ | c _ {1} | = c $, | ||
| + | $ 0 < c \leq 1 $, | ||
| + | in the expansion (1): For $ f(z) \in \widetilde{R} (c) $, | ||
| + | $ 0 < c < 1 $, | ||
| + | the following sharp inequalities are valid: | ||
| − | + | $$ \tag{5 } | |
| + | \mathop{\rm Im} H (ir; r, c) \leq \ | ||
| + | | f (re ^ {i \theta } ) | \leq \ | ||
| + | \mathop{\rm Im} F (ir; r, c). | ||
| + | $$ | ||
| − | + | Here the functions $ w = H(z; r, c) $ | |
| + | and $ w = F(z; r, c) $ | ||
| + | map the disc $ | z | < 1 $ | ||
| + | onto domains which are symmetric with respect to the imaginary axis of the $ w $- | ||
| + | plane, and the boundaries of which belong to the union of the closures of certain trajectories or orthogonal trajectories of a [[Quadratic differential|quadratic differential]] in the $ w $- | ||
| + | plane with a certain symmetry in the distribution of the zeros and poles [[#References|[4]]], [[#References|[5]]]. Certain optimal results for functions in $ \widetilde{R} (c) $ | ||
| + | were obtained by the simultaneous use of the method of the extremal metric and the symmetrization method [[#References|[4]]]. | ||
| − | < | + | Many results obtained for the functions in the classes $ \widetilde{R} $ |
| + | and $ R $ | ||
| + | are consequences of corresponding results for systems of functions mapping the disc $ | z | < 1 $ | ||
| + | onto disjoint domains [[#References|[6]]]. The analogue of $ R $ | ||
| + | for a finitely-connected domain $ G $ | ||
| + | without isolated boundary points and not containing the point $ z = \infty $, | ||
| + | is the class $ R _ {a} (G) $, | ||
| + | $ a \in G $, | ||
| + | of functions $ f(z) $ | ||
| + | regular in $ G $ | ||
| + | and satisfying the conditions $ f(a) = 0 $, | ||
| + | $ f(z _ {1} )f(z _ {2} ) \neq 1 $, | ||
| + | where $ z _ {1} , z _ {2} $ | ||
| + | are arbitrary points in $ G $. | ||
| + | The class $ R _ {a} (G) $ | ||
| + | extends the class $ B _ {a} (G) $ | ||
| + | of functions $ f(z) $, | ||
| + | regular in $ G $ | ||
| + | and such that $ f(a) = 0 $, | ||
| + | $ | f(z) | < 1 $ | ||
| + | in $ G $. | ||
| + | The following sharp estimate is an extension of the result of Bieberbach–Eilenberg and of inequality (3) to functions of class $ R _ {a} (G) $: | ||
| + | If $ f(z) \in R _ {a} (G) $, | ||
| + | then | ||
| − | where | + | $$ |
| + | | f ^ { \prime } (z) | \leq \ | ||
| + | | 1 - f ^ { 2 } (z) | \ | ||
| + | F ^ { \prime } (z, z),\ \ | ||
| + | z \in G. | ||
| + | $$ | ||
| + | |||
| + | where $ F(z, b), b \in G $, | ||
| + | is that function in $ B _ {b} (G) $ | ||
| + | for which $ F ^ { \prime } (b, b) = \max | f ^ { \prime } (b) | $ | ||
| + | in this class. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Bieberbach, "Ueber einige Extremalprobleme im Gebiete der konformen Abbildung" ''Math. Ann.'' , '''77''' (1916) pp. 153–172</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Eilenberg, "Sur quelques propriétés topologiques de la surface de sphère" ''Fund. Math.'' , '''25''' (1935) pp. 267–272</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> W. Rogosinski, "On a theorem of Bieberbach–Eilenberg" ''J. London Math. Soc. (1)'' , '''14''' (1939) pp. 4–11</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.A. Jenkins, "Univalent functions and conformal mappings" , Springer (1958)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J.A. Jenkins, "On Bieberbach–Eilenberg functions III" ''Trans. Amer. Math. Soc.'' , '''119''' : 2 (1965) pp. 195–215</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> N.A. Lebedev, "The area principle in the theory of univalent functions" , Moscow (1975) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Bieberbach, "Ueber einige Extremalprobleme im Gebiete der konformen Abbildung" ''Math. Ann.'' , '''77''' (1916) pp. 153–172</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Eilenberg, "Sur quelques propriétés topologiques de la surface de sphère" ''Fund. Math.'' , '''25''' (1935) pp. 267–272</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> W. Rogosinski, "On a theorem of Bieberbach–Eilenberg" ''J. London Math. Soc. (1)'' , '''14''' (1939) pp. 4–11</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.A. Jenkins, "Univalent functions and conformal mappings" , Springer (1958)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J.A. Jenkins, "On Bieberbach–Eilenberg functions III" ''Trans. Amer. Math. Soc.'' , '''119''' : 2 (1965) pp. 195–215</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> N.A. Lebedev, "The area principle in the theory of univalent functions" , Moscow (1975) (In Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.L. Duren, "Univalent functions" , Springer (1983) pp. Chapt. 10</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.L. Duren, "Univalent functions" , Springer (1983) pp. Chapt. 10</TD></TR></table> | ||
Latest revision as of 10:59, 29 May 2020
in the disc $ | z | < 1 $
The class $ R $ of functions $ f(z) $, regular in the disc $ | z | < 1 $, which have an expansion of the form
$$ \tag{1 } f(z) = c _ {1} z + \dots + c _ {n} z ^ {n} + \dots $$
and which satisfy the condition
$$ f(z _ {1} ) f (z _ {2} ) \neq 1 ,\ \ | z _ {1} | < 1,\ | z _ {2} | < 1. $$
This class of functions is a natural extension of the class $ B $ of functions $ f(z) $, regular in the disc $ | z | < 1 $, with an expansion (1) and such that $ | f(z) | < 1 $ for $ | z | < 1 $. The class of univalent functions (cf. Univalent function) in $ R $ is denoted by $ \widetilde{R} $. The functions in $ R $ were named after L. Bieberbach [1], who showed that for $ f(z) \in \widetilde{R} $ the inequality
$$ \tag{2 } | c _ {1} | \leq 1 $$
is valid, while equality holds only for the function $ f(z) = e ^ {i \theta } z $, where $ \theta $ is real, and after S. Eilenberg [2], who proved that the inequality (2) is valid for the whole class $ R $. It was shown by W. Rogosinski [3] that every function in $ R $ is subordinate (cf. Subordination principle) to some function in $ \widetilde{R} $. Inequality (2) yields the following sharp inequality for $ f(z) \in R $:
$$ \tag{3 } | f ^ { \prime } (z) | \leq \ \frac{| 1 - f ^ {2} (z) | }{1- | z | ^ {2} } ,\ \ | z | < 1. $$
The following bound on the modulus of a function in $ R $ has been obtained: If $ f(z) \in R $, then
$$ \tag{4 } | f(z) | \leq \frac{r}{(1-r ^ {2} ) ^ {1/2} } ,\ \ | z | = r ,\ 0 < r < 1, $$
and (4) becomes an equality only for the functions $ \pm f(ze ^ {i \theta } ; r) $, where $ \theta $ is real and
$$ f (z; r) = \ \frac{(1 - r ^ {2} ) ^ {1/2} z }{1 + irz } . $$
The method of the extremal metric (cf. Extremal metric, method of the) provided the solution of the problem of the maximum and minimum of $ | f(z) | $ in the class $ \widetilde{R} (c) $ of functions in $ \widetilde{R} $ with a fixed value $ | c _ {1} | = c $, $ 0 < c \leq 1 $, in the expansion (1): For $ f(z) \in \widetilde{R} (c) $, $ 0 < c < 1 $, the following sharp inequalities are valid:
$$ \tag{5 } \mathop{\rm Im} H (ir; r, c) \leq \ | f (re ^ {i \theta } ) | \leq \ \mathop{\rm Im} F (ir; r, c). $$
Here the functions $ w = H(z; r, c) $ and $ w = F(z; r, c) $ map the disc $ | z | < 1 $ onto domains which are symmetric with respect to the imaginary axis of the $ w $- plane, and the boundaries of which belong to the union of the closures of certain trajectories or orthogonal trajectories of a quadratic differential in the $ w $- plane with a certain symmetry in the distribution of the zeros and poles [4], [5]. Certain optimal results for functions in $ \widetilde{R} (c) $ were obtained by the simultaneous use of the method of the extremal metric and the symmetrization method [4].
Many results obtained for the functions in the classes $ \widetilde{R} $ and $ R $ are consequences of corresponding results for systems of functions mapping the disc $ | z | < 1 $ onto disjoint domains [6]. The analogue of $ R $ for a finitely-connected domain $ G $ without isolated boundary points and not containing the point $ z = \infty $, is the class $ R _ {a} (G) $, $ a \in G $, of functions $ f(z) $ regular in $ G $ and satisfying the conditions $ f(a) = 0 $, $ f(z _ {1} )f(z _ {2} ) \neq 1 $, where $ z _ {1} , z _ {2} $ are arbitrary points in $ G $. The class $ R _ {a} (G) $ extends the class $ B _ {a} (G) $ of functions $ f(z) $, regular in $ G $ and such that $ f(a) = 0 $, $ | f(z) | < 1 $ in $ G $. The following sharp estimate is an extension of the result of Bieberbach–Eilenberg and of inequality (3) to functions of class $ R _ {a} (G) $: If $ f(z) \in R _ {a} (G) $, then
$$ | f ^ { \prime } (z) | \leq \ | 1 - f ^ { 2 } (z) | \ F ^ { \prime } (z, z),\ \ z \in G. $$
where $ F(z, b), b \in G $, is that function in $ B _ {b} (G) $ for which $ F ^ { \prime } (b, b) = \max | f ^ { \prime } (b) | $ in this class.
References
| [1] | L. Bieberbach, "Ueber einige Extremalprobleme im Gebiete der konformen Abbildung" Math. Ann. , 77 (1916) pp. 153–172 |
| [2] | S. Eilenberg, "Sur quelques propriétés topologiques de la surface de sphère" Fund. Math. , 25 (1935) pp. 267–272 |
| [3] | W. Rogosinski, "On a theorem of Bieberbach–Eilenberg" J. London Math. Soc. (1) , 14 (1939) pp. 4–11 |
| [4] | J.A. Jenkins, "Univalent functions and conformal mappings" , Springer (1958) |
| [5] | J.A. Jenkins, "On Bieberbach–Eilenberg functions III" Trans. Amer. Math. Soc. , 119 : 2 (1965) pp. 195–215 |
| [6] | N.A. Lebedev, "The area principle in the theory of univalent functions" , Moscow (1975) (In Russian) |
Comments
References
| [a1] | P.L. Duren, "Univalent functions" , Springer (1983) pp. Chapt. 10 |
Bieberbach-Eilenberg functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bieberbach-Eilenberg_functions&oldid=46053