Namespaces
Variants
Actions

Difference between revisions of "Bicylindrical domain"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016130/b0161301.png" /> in the complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016130/b0161302.png" /> that can be represented in the form of the Cartesian product of two planar domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016130/b0161303.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016130/b0161304.png" />, i.e.
+
<!--
 +
b0161301.png
 +
$#A+1 = 10 n = 0
 +
$#C+1 = 10 : ~/encyclopedia/old_files/data/B016/B.0106130 Bicylindrical domain
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016130/b0161305.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
A special case of a bicylindrical domain is the bidisc (bicylinder) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016130/b0161306.png" /> of radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016130/b0161307.png" /> with centre at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016130/b0161308.png" />. The Cartesian product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016130/b0161309.png" /> (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016130/b01613010.png" />) planar domains is said to be a polycylindrical domain. A polydisc (polycylinder) is defined in a similar way.
+
A domain  $  D $
 +
in the complex space  $  \mathbf C  ^ {2} $
 +
that can be represented in the form of the Cartesian product of two planar domains  $  D _ {1} $
 +
and  $  D _ {2} $,
 +
i.e.
 +
 
 +
$$
 +
D  =  \{ {(z _ {1} , z _ {2} ) } : {
 +
z _ {1} \in D _ {1} , z _ {2} \in D _ {2} } \}
 +
.
 +
$$
 +
 
 +
A special case of a bicylindrical domain is the bidisc (bicylinder) $  B(a, r) = \{ {(z _ {1} , z _ {2} ) } : {| z _ {1} - a _ {1} | < r _ {1} ,  | z _ {2} - a _ {2} | < r _ {2} } \} $
 +
of radius $  r = (r _ {1} , r _ {2} ) $
 +
with centre at $  a = (a _ {1} , a _ {2} ) $.  
 +
The Cartesian product of $  n $(
 +
for $  n \geq  3 $)  
 +
planar domains is said to be a polycylindrical domain. A polydisc (polycylinder) is defined in a similar way.

Latest revision as of 10:59, 29 May 2020


A domain $ D $ in the complex space $ \mathbf C ^ {2} $ that can be represented in the form of the Cartesian product of two planar domains $ D _ {1} $ and $ D _ {2} $, i.e.

$$ D = \{ {(z _ {1} , z _ {2} ) } : { z _ {1} \in D _ {1} , z _ {2} \in D _ {2} } \} . $$

A special case of a bicylindrical domain is the bidisc (bicylinder) $ B(a, r) = \{ {(z _ {1} , z _ {2} ) } : {| z _ {1} - a _ {1} | < r _ {1} , | z _ {2} - a _ {2} | < r _ {2} } \} $ of radius $ r = (r _ {1} , r _ {2} ) $ with centre at $ a = (a _ {1} , a _ {2} ) $. The Cartesian product of $ n $( for $ n \geq 3 $) planar domains is said to be a polycylindrical domain. A polydisc (polycylinder) is defined in a similar way.

How to Cite This Entry:
Bicylindrical domain. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bicylindrical_domain&oldid=46052
This article was adapted from an original article by M. Shirinbekov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article