Difference between revisions of "Best linear method"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b0159301.png | ||
+ | $#A+1 = 85 n = 0 | ||
+ | $#C+1 = 85 : ~/encyclopedia/old_files/data/B015/B.0105930 Best linear method | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | With respect to the approximation of elements in a given set $ \mathfrak M $, | |
+ | the linear method that yields the smallest error among all linear methods. In a normed linear space $ X $, | ||
+ | a linear method for the approximation of elements $ x \in \mathfrak M \subset X $ | ||
+ | by elements of a fixed subspace $ F \subset X $ | ||
+ | is represented by a linear operator that maps the entire space $ X $, | ||
+ | or some linear manifold containing $ \mathfrak M $, | ||
+ | into $ F $. | ||
+ | If $ {\mathcal L} $ | ||
+ | is the set of all such operators, a best linear method for $ \mathfrak M $( | ||
+ | if it exists) is defined by an operator $ \widetilde{A} \in {\mathcal L} $ | ||
+ | for which | ||
− | + | $$ | |
+ | \sup _ {x \in \mathfrak M } \ | ||
+ | \| x - \widetilde{A} x \| = \ | ||
+ | \inf _ {A \in {\mathcal L} } \ | ||
+ | \sup _ {x \in \mathfrak M } \ | ||
+ | \| x - Ax \| . | ||
+ | $$ | ||
− | + | The method defined by an operator $ A $ | |
+ | in $ {\mathcal L} $ | ||
+ | will certainly be a best linear method for $ \mathfrak M $ | ||
+ | relative to the approximating set $ F $ | ||
+ | if, for all $ x \in \mathfrak M $, | ||
− | + | $$ | |
+ | \| x - Ax \| \leq \ | ||
+ | \sup _ {x \in \mathfrak M } E (x, F) | ||
+ | $$ | ||
− | + | ( $ E (x, F) $ | |
+ | is the [[Best approximation|best approximation]] of $ x $ | ||
+ | by $ F $) | ||
+ | and if, moreover, for all $ x \in X $, | ||
− | + | $$ | |
+ | \| x - Ax \| = E (x, F). | ||
+ | $$ | ||
− | + | The latter is certainly true if $ X $ | |
+ | is a Hilbert space, $ F = F _ {n} $ | ||
+ | is an $ n $- | ||
+ | dimensional subspace of $ X $, | ||
+ | $ n = 1, 2 \dots $ | ||
+ | and $ A $ | ||
+ | is the orthogonal projection onto $ F _ {n} $, | ||
+ | i.e. | ||
− | + | $$ | |
+ | Ax = \ | ||
+ | \sum _ {k = 1 } ^ { n } (x, e _ {k} ) e _ {k} , | ||
+ | $$ | ||
− | + | where $ \{ e _ {1} \dots e _ {n} \} $ | |
+ | is an orthonormal basis in $ F _ {n} $. | ||
− | + | Let $ X $ | |
+ | be a Banach space of functions defined on the entire real line, with a translation-invariant norm: $ \| x ( \cdot + \tau ) \| = \| x ( \cdot ) \| $( | ||
+ | this condition holds, e.g. for the norms of the spaces $ C = C [0, 2 \pi ] $ | ||
+ | and $ L _ {p} = L _ {p} (0, 2 \pi ) $, | ||
+ | $ 1 \leq p \leq \infty $, | ||
+ | of $ 2 \pi $- | ||
+ | periodic functions); let $ F = T _ {n} $ | ||
+ | be the subspace of trigonometric polynomials of order $ n $. | ||
+ | There exist best linear methods (relative to $ T _ {n} $) | ||
+ | for a class $ \mathfrak M $ | ||
+ | of functions $ x (t) \in X $ | ||
+ | that contains $ x (t + \alpha ) $ | ||
+ | for any $ \alpha \in \mathbf R $ | ||
+ | whenever it contains $ x (t) $. | ||
+ | An example is the linear method | ||
− | + | $$ \tag{* } | |
+ | A (x; t; \mu , \nu ) = | ||
+ | \frac{\mu _ {0} a _ {0} }{2} | ||
+ | + | ||
+ | $$ | ||
− | + | $$ | |
+ | + | ||
+ | \sum _ {k = 1 } ^ { n } \{ \mu _ {k} (a _ {k} \cos kt + b _ {k} \ | ||
+ | \sin kt) + \nu _ {k} (a _ {k} \sin kt - b _ {k} \cos kt) \} , | ||
+ | $$ | ||
− | + | where $ a _ {k} $ | |
+ | and $ b _ {k} $ | ||
+ | are the Fourier coefficients of $ x (t) $ | ||
+ | relative to the trigonometric system, and $ \mu _ {k} $ | ||
+ | and $ \nu _ {k} $ | ||
+ | are numbers. | ||
+ | |||
+ | Now consider the classes $ W _ \infty ^ {r} M $( | ||
+ | and $ W _ {1} ^ {r} M $), | ||
+ | $ r = 1, 2 \dots $ | ||
+ | of $ 2 \pi $- | ||
+ | periodic functions $ x (t) $ | ||
+ | whose derivatives $ x ^ {(r - 1) } (t) $ | ||
+ | are locally absolutely continuous and whose derivatives $ x ^ {(r)} (t) $ | ||
+ | are bounded in norm in $ L _ \infty $( | ||
+ | respectively, in $ L _ {1} $) | ||
+ | by a number $ M $. | ||
+ | For these classes, best linear methods of the type (*) yield the same error (over the entire class) in the metric of $ C $( | ||
+ | respectively, $ L _ {1} $) | ||
+ | as the best approximation by a subspace $ T _ {n} $; | ||
+ | the analogous assertion is true for these classes with any rational number $ r > 0 $( | ||
+ | interpreting the derivatives $ x ^ {(r)} (t) $ | ||
+ | in the sense of Weyl). For integers $ r = 1, 2 \dots $ | ||
+ | best linear methods of type (*) have been constructed using only the coefficients $ \mu _ {k} $( | ||
+ | all $ \nu _ {k} = 0 $). | ||
+ | |||
+ | If $ F = S _ {n} ^ {r} $ | ||
+ | is the subspace of $ 2 \pi $- | ||
+ | periodic polynomial splines of order $ r $ | ||
+ | and defect 1 with respect to the partition $ k \pi /n $, | ||
+ | $ k = 0, \pm 1 \dots $ | ||
+ | then a best linear method for the classes $ W _ \infty ^ {r + 1 } M $( | ||
+ | and $ W _ {1} ^ {r + 1 } $), | ||
+ | $ r = 1, 2 \dots $ | ||
+ | is achieved in $ L _ {p} $, | ||
+ | $ 1 \leq p \leq \infty $( | ||
+ | resp. in $ L _ {1} $) | ||
+ | by splines in $ S _ {n} ^ {r} $ | ||
+ | interpolating the function $ x (t) $ | ||
+ | at the points $ k \pi /n + [1 + (-1) ^ {r} ] \pi /4n $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Kiesewetter, "Vorlesungen über lineare Approximation" , Deutsch. Verlag Wissenschaft. (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.R. Rice, "The approximation of functions" , '''1. Linear theory''' , Addison-Wesley (1964)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Kiesewetter, "Vorlesungen über lineare Approximation" , Deutsch. Verlag Wissenschaft. (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.R. Rice, "The approximation of functions" , '''1. Linear theory''' , Addison-Wesley (1964)</TD></TR></table> |
Latest revision as of 10:58, 29 May 2020
With respect to the approximation of elements in a given set $ \mathfrak M $,
the linear method that yields the smallest error among all linear methods. In a normed linear space $ X $,
a linear method for the approximation of elements $ x \in \mathfrak M \subset X $
by elements of a fixed subspace $ F \subset X $
is represented by a linear operator that maps the entire space $ X $,
or some linear manifold containing $ \mathfrak M $,
into $ F $.
If $ {\mathcal L} $
is the set of all such operators, a best linear method for $ \mathfrak M $(
if it exists) is defined by an operator $ \widetilde{A} \in {\mathcal L} $
for which
$$ \sup _ {x \in \mathfrak M } \ \| x - \widetilde{A} x \| = \ \inf _ {A \in {\mathcal L} } \ \sup _ {x \in \mathfrak M } \ \| x - Ax \| . $$
The method defined by an operator $ A $ in $ {\mathcal L} $ will certainly be a best linear method for $ \mathfrak M $ relative to the approximating set $ F $ if, for all $ x \in \mathfrak M $,
$$ \| x - Ax \| \leq \ \sup _ {x \in \mathfrak M } E (x, F) $$
( $ E (x, F) $ is the best approximation of $ x $ by $ F $) and if, moreover, for all $ x \in X $,
$$ \| x - Ax \| = E (x, F). $$
The latter is certainly true if $ X $ is a Hilbert space, $ F = F _ {n} $ is an $ n $- dimensional subspace of $ X $, $ n = 1, 2 \dots $ and $ A $ is the orthogonal projection onto $ F _ {n} $, i.e.
$$ Ax = \ \sum _ {k = 1 } ^ { n } (x, e _ {k} ) e _ {k} , $$
where $ \{ e _ {1} \dots e _ {n} \} $ is an orthonormal basis in $ F _ {n} $.
Let $ X $ be a Banach space of functions defined on the entire real line, with a translation-invariant norm: $ \| x ( \cdot + \tau ) \| = \| x ( \cdot ) \| $( this condition holds, e.g. for the norms of the spaces $ C = C [0, 2 \pi ] $ and $ L _ {p} = L _ {p} (0, 2 \pi ) $, $ 1 \leq p \leq \infty $, of $ 2 \pi $- periodic functions); let $ F = T _ {n} $ be the subspace of trigonometric polynomials of order $ n $. There exist best linear methods (relative to $ T _ {n} $) for a class $ \mathfrak M $ of functions $ x (t) \in X $ that contains $ x (t + \alpha ) $ for any $ \alpha \in \mathbf R $ whenever it contains $ x (t) $. An example is the linear method
$$ \tag{* } A (x; t; \mu , \nu ) = \frac{\mu _ {0} a _ {0} }{2} + $$
$$ + \sum _ {k = 1 } ^ { n } \{ \mu _ {k} (a _ {k} \cos kt + b _ {k} \ \sin kt) + \nu _ {k} (a _ {k} \sin kt - b _ {k} \cos kt) \} , $$
where $ a _ {k} $ and $ b _ {k} $ are the Fourier coefficients of $ x (t) $ relative to the trigonometric system, and $ \mu _ {k} $ and $ \nu _ {k} $ are numbers.
Now consider the classes $ W _ \infty ^ {r} M $( and $ W _ {1} ^ {r} M $), $ r = 1, 2 \dots $ of $ 2 \pi $- periodic functions $ x (t) $ whose derivatives $ x ^ {(r - 1) } (t) $ are locally absolutely continuous and whose derivatives $ x ^ {(r)} (t) $ are bounded in norm in $ L _ \infty $( respectively, in $ L _ {1} $) by a number $ M $. For these classes, best linear methods of the type (*) yield the same error (over the entire class) in the metric of $ C $( respectively, $ L _ {1} $) as the best approximation by a subspace $ T _ {n} $; the analogous assertion is true for these classes with any rational number $ r > 0 $( interpreting the derivatives $ x ^ {(r)} (t) $ in the sense of Weyl). For integers $ r = 1, 2 \dots $ best linear methods of type (*) have been constructed using only the coefficients $ \mu _ {k} $( all $ \nu _ {k} = 0 $).
If $ F = S _ {n} ^ {r} $ is the subspace of $ 2 \pi $- periodic polynomial splines of order $ r $ and defect 1 with respect to the partition $ k \pi /n $, $ k = 0, \pm 1 \dots $ then a best linear method for the classes $ W _ \infty ^ {r + 1 } M $( and $ W _ {1} ^ {r + 1 } $), $ r = 1, 2 \dots $ is achieved in $ L _ {p} $, $ 1 \leq p \leq \infty $( resp. in $ L _ {1} $) by splines in $ S _ {n} ^ {r} $ interpolating the function $ x (t) $ at the points $ k \pi /n + [1 + (-1) ^ {r} ] \pi /4n $.
References
[1] | N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian) |
[2] | N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian) |
[3] | V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian) |
Comments
References
[a1] | H. Kiesewetter, "Vorlesungen über lineare Approximation" , Deutsch. Verlag Wissenschaft. (1973) |
[a2] | J.R. Rice, "The approximation of functions" , 1. Linear theory , Addison-Wesley (1964) |
Best linear method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Best_linear_method&oldid=46042