|
|
Line 1: |
Line 1: |
− | A complex [[Banach space|Banach space]] of holomorphic automorphic forms introduced by L. Bers (1961). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b1103801.png" /> be an open set of the Riemann sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b1103802.png" /> whose boundary consists of more than two points. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b1103803.png" /> carries a unique complete conformal metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b1103804.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b1103805.png" /> with curvature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b1103806.png" />, known as the hyperbolic metric on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b1103807.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b1103808.png" /> be a properly discontinuous group of conformal mappings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b1103809.png" /> onto itself (cf. also [[Kleinian group|Kleinian group]]; [[Conformal mapping|Conformal mapping]]). Typical examples of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038010.png" /> are Kleinian groups (cf. also [[Kleinian group|Kleinian group]]), that is, a group of Möbius transformations (cf. also [[Fractional-linear mapping|Fractional-linear mapping]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038011.png" /> acting properly discontinuously on an open set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038012.png" />. By the conformal invariance, the hyperbolic area measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038013.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038014.png" />) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038015.png" /> is projected to an area measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038016.png" /> on the orbit space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038017.png" />. In other words, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038019.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038020.png" /> is the natural projection.
| + | <!-- |
| + | b1103801.png |
| + | $#A+1 = 124 n = 0 |
| + | $#C+1 = 124 : ~/encyclopedia/old_files/data/B110/B.1100380 Bers space |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Fix an integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038021.png" />. A [[Holomorphic function|holomorphic function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038022.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038023.png" /> is called an automorphic form of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038025.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038026.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038027.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038028.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038029.png" /> is invariant under the action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038030.png" /> and hence may be considered as a function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038031.png" />. The Bers space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038033.png" />, is the complex Banach space of holomorphic automorphic forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038034.png" /> of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038035.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038036.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038037.png" /> such that the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038038.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038039.png" /> belongs to the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038040.png" /> with respect to the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038041.png" />. The norm in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038042.png" /> is thus given by
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038043.png" /></td> </tr></table>
| + | A complex [[Banach space|Banach space]] of holomorphic automorphic forms introduced by L. Bers (1961). Let $ D $ |
| + | be an open set of the Riemann sphere $ {\widehat{\mathbf C} } = \mathbf C \cup \{ \infty \} $ |
| + | whose boundary consists of more than two points. Then $ D $ |
| + | carries a unique complete conformal metric $ \lambda ( z ) | {dz } | $ |
| + | on $ D $ |
| + | with curvature $ - 4 $, |
| + | known as the hyperbolic metric on $ D $. |
| + | Let $ G $ |
| + | be a properly discontinuous group of conformal mappings of $ D $ |
| + | onto itself (cf. also [[Kleinian group|Kleinian group]]; [[Conformal mapping|Conformal mapping]]). Typical examples of $ G $ |
| + | are Kleinian groups (cf. also [[Kleinian group|Kleinian group]]), that is, a group of Möbius transformations (cf. also [[Fractional-linear mapping|Fractional-linear mapping]]) of $ {\widehat{\mathbf C} } $ |
| + | acting properly discontinuously on an open set of $ {\widehat{\mathbf C} } $. |
| + | By the conformal invariance, the hyperbolic area measure $ \lambda ( z ) ^ {2} dx dy $( |
| + | $ z = x + iy $) |
| + | on $ D $ |
| + | is projected to an area measure $ d \mu $ |
| + | on the orbit space $ D/G $. |
| + | In other words, let $ d \mu ( w ) = \lambda ( z ) ^ {2} dx dy $, |
| + | $ w = \pi ( z ) $, |
| + | where $ \pi : D \rightarrow {D/G } $ |
| + | is the natural projection. |
| | | |
− | if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038044.png" />, and | + | Fix an integer $ q \geq 2 $. |
| + | A [[Holomorphic function|holomorphic function]] $ \varphi $ |
| + | on $ D $ |
| + | is called an automorphic form of weight $ - 2q $ |
| + | for $ G $ |
| + | if $ ( \varphi \circ g ) \cdot ( g ^ \prime ) ^ {q} = \varphi $ |
| + | for all $ g \in G $. |
| + | Then $ \lambda ^ {- q } | \varphi | $ |
| + | is invariant under the action of $ G $ |
| + | and hence may be considered as a function on $ D/G $. |
| + | The Bers space $ A _ {q} ^ {p} ( D,G ) $, |
| + | where $ 1 \leq p \leq \infty $, |
| + | is the complex Banach space of holomorphic automorphic forms $ \varphi $ |
| + | of weight $ - 2q $ |
| + | on $ D $ |
| + | for $ G $ |
| + | such that the function $ \lambda ^ {- q } | \varphi | $ |
| + | on $ D/G $ |
| + | belongs to the space $ L _ {p} $ |
| + | with respect to the measure $ \mu $. |
| + | The norm in $ A _ {q} ^ {p} ( D,G ) $ |
| + | is thus given by |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038045.png" /></td> </tr></table>
| + | $$ |
| + | \left \| \varphi \right \| = ( {\int\limits \int\limits } _ {D/G } {\lambda ^ {- pq } \left | \varphi \right | ^ {p} } {d \mu } ) ^ {1/p } |
| + | $$ |
| | | |
− | if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038046.png" />. Automorphic forms in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038047.png" /> are said to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038049.png" />-integrable if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038050.png" />, and bounded if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038051.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038052.png" /> is trivial, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038053.png" /> is abbreviated to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038054.png" />. Note that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038055.png" /> is isometrically embedded as a subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038056.png" />. | + | if $ 1 \leq p < \infty $, |
| + | and |
| + | |
| + | $$ |
| + | \left \| \varphi \right \| = \sup _ {D/G } \lambda ^ {- q } \left | \varphi \right | |
| + | $$ |
| + | |
| + | if $ p = \infty $. |
| + | Automorphic forms in $ A _ {q} ^ {p} ( D,G ) $ |
| + | are said to be $ p $- |
| + | integrable if $ 1 \leq p < \infty $, |
| + | and bounded if $ p = \infty $. |
| + | When $ G $ |
| + | is trivial, $ A _ {q} ^ {p} ( D,G ) $ |
| + | is abbreviated to $ A _ {q} ^ {p} ( D ) $. |
| + | Note that $ A _ {q} ^ \infty ( D,G ) $ |
| + | is isometrically embedded as a subspace of $ A _ {q} ^ \infty ( D ) $. |
| | | |
| ==Some properties of Bers spaces.== | | ==Some properties of Bers spaces.== |
| | | |
| + | 1) Let $ {1 / p } + {1 / {p ^ \prime } } = 1 $. |
| + | The Petersson scalar product of $ \varphi \in A _ {q} ^ {p} ( D,G ) $ |
| + | and $ \psi \in A _ {q} ^ {p ^ \prime } ( D,G ) $ |
| + | is defined by |
| | | |
− | 1) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038057.png" />. The Petersson scalar product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038059.png" /> is defined by
| + | $$ |
− | | + | \left ( \varphi , \psi \right ) = {\int\limits \int\limits } _ {D/G } {\lambda ^ {- 2q } \varphi {\overline \psi \; } } {d \mu } . |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038060.png" /></td> </tr></table>
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038061.png" />, then the Petersson scalar product establishes an anti-linear isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038062.png" /> onto the dual space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038063.png" />, whose operator norm is between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038065.png" />. | + | If $ 1 \leq p < \infty $, |
| + | then the Petersson scalar product establishes an anti-linear isomorphism of $ A _ {q} ^ {p ^ \prime } ( D,G ) $ |
| + | onto the dual space of $ A _ {q} ^ {p} ( D,G ) $, |
| + | whose operator norm is between $ ( q - 1 ) ( 2q - 1 ) ^ {- 1 } $ |
| + | and $ 1 $. |
| | | |
− | 2) The Poincaré (theta-) series of a holomorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038066.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038067.png" /> is defined by | + | 2) The Poincaré (theta-) series of a holomorphic function $ f $ |
| + | on $ D $ |
| + | is defined by |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038068.png" /></td> </tr></table>
| + | $$ |
| + | \Theta f = \sum _ {g \in G } ( f \circ g ) \cdot ( g ^ \prime ) ^ {q} |
| + | $$ |
| | | |
− | whenever the right-hand side converges absolutely and uniformly on compact subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038069.png" /> (cf. [[Absolutely convergent series|Absolutely convergent series]]; [[Uniform convergence|Uniform convergence]]). Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038070.png" /> is an automorphic form of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038071.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038072.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038073.png" />. Moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038074.png" /> gives a continuous linear mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038075.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038076.png" /> of norm at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038077.png" />. For every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038078.png" /> there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038079.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038080.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038081.png" />. | + | whenever the right-hand side converges absolutely and uniformly on compact subsets of $ D $( |
| + | cf. [[Absolutely convergent series|Absolutely convergent series]]; [[Uniform convergence|Uniform convergence]]). Then $ \Theta f $ |
| + | is an automorphic form of weight $ - 2q $ |
| + | on $ D $ |
| + | for $ G $. |
| + | Moreover, $ \Theta $ |
| + | gives a continuous linear mapping of $ A _ {q} ^ {1} ( D ) $ |
| + | onto $ A _ {q} ^ {1} ( D,G ) $ |
| + | of norm at most $ 1 $. |
| + | For every $ \varphi \in A _ {q} ^ {p} ( D,G ) $ |
| + | there exists an $ f \in A _ {q} ^ {p} ( D ) $ |
| + | with $ \| f \| \leq ( 2q - 1 ) ( q - 1 ) ^ {- 1 } \| \varphi \| $ |
| + | such that $ \varphi = \Theta f $. |
| | | |
− | 3) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038082.png" /> be the set of branch points of the natural projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038083.png" />. Assume that: i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038084.png" /> is obtained from a (connected) closed [[Riemann surface|Riemann surface]] of genus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038085.png" /> by deleting precisely <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038086.png" /> points; and ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038087.png" /> consists of exactly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038088.png" /> points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038089.png" /> (possibly, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038090.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038091.png" />). For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038092.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038093.png" /> be the common multiplicity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038094.png" /> at points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038095.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038096.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038097.png" /> and | + | 3) Let $ B $ |
| + | be the set of branch points of the natural projection $ \pi $. |
| + | Assume that: i) $ D/G $ |
| + | is obtained from a (connected) closed [[Riemann surface|Riemann surface]] of genus $ g $ |
| + | by deleting precisely $ m $ |
| + | points; and ii) $ \pi ( B ) $ |
| + | consists of exactly $ n $ |
| + | points $ p _ {1} \dots p _ {n} $( |
| + | possibly, $ m = 0 $ |
| + | or $ n =0 $). |
| + | For each $ k = 1 \dots n $, |
| + | let $ \nu _ {k} $ |
| + | be the common multiplicity of $ \pi $ |
| + | at points of $ \pi ^ {- 1 } ( p _ {k} ) $. |
| + | Then $ A _ {q} ^ {p} ( D,G ) = A _ {q} ^ \infty ( D,G ) $ |
| + | for $ 1 \leq p \leq \infty $ |
| + | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038098.png" /></td> </tr></table>
| + | $$ |
| + | { \mathop{\rm dim} } A _ {q} ^ \infty ( D,G ) = |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038099.png" /></td> </tr></table>
| + | $$ |
| + | = |
| + | ( 2q - 1 ) ( g - 1 ) + ( q - 1 ) m + \sum _ {k =1 } ^ { n } \left [ q \left ( 1 - { |
| + | \frac{1}{\nu _ {k} } |
| + | } \right ) \right ] , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380100.png" /> denotes the largest integer that does not exceed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380101.png" />. | + | where $ [ x ] $ |
| + | denotes the largest integer that does not exceed $ x $. |
| | | |
− | 4) Consider the particular case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380102.png" /> is the unit disc. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380103.png" /> is a [[Fuchsian group|Fuchsian group]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380104.png" />. It had been conjectured that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380105.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380106.png" />, until Ch. Pommerenke [[#References|[a6]]] constructed a counterexample. In [[#References|[a5]]] D. Niebur and M. Sheingorn characterized the Fuchsian groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380107.png" /> for which the inclusion relation holds. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380108.png" /> is finitely generated, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380109.png" />. | + | 4) Consider the particular case where $ D $ |
| + | is the unit disc. Then $ G $ |
| + | is a [[Fuchsian group|Fuchsian group]] and $ \lambda ( z ) = ( 1 - | z | ^ {2} ) ^ {- 1 } $. |
| + | It had been conjectured that $ A _ {q} ^ {1} ( D,G ) \subset A _ {q} ^ \infty ( D,G ) $ |
| + | for any $ G $, |
| + | until Ch. Pommerenke [[#References|[a6]]] constructed a counterexample. In [[#References|[a5]]] D. Niebur and M. Sheingorn characterized the Fuchsian groups $ G $ |
| + | for which the inclusion relation holds. In particular, if $ G $ |
| + | is finitely generated, then $ A _ {q} ^ {1} ( D,G ) \subset A _ {q} ^ \infty ( D,G ) $. |
| | | |
− | 5) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380110.png" /> be a Fuchsian group acting on the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380111.png" />. It also preserves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380112.png" />, the outside of the unit circle. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380113.png" /> is conformal on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380114.png" /> and can be extended to a [[Quasi-conformal mapping|quasi-conformal mapping]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380115.png" /> onto itself such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380116.png" /> is a Möbius transformation for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380117.png" />, then its [[Schwarzian derivative|Schwarzian derivative]] | + | 5) Let $ G $ |
| + | be a Fuchsian group acting on the unit disc $ D $. |
| + | It also preserves $ D ^ {*} = {\widehat{\mathbf C} } \setminus {\overline{D}\; } $, |
| + | the outside of the unit circle. If $ f $ |
| + | is conformal on $ D ^ {*} $ |
| + | and can be extended to a [[Quasi-conformal mapping|quasi-conformal mapping]] of $ {\widehat{\mathbf C} } $ |
| + | onto itself such that $ f \circ g \circ f ^ {- 1 } $ |
| + | is a Möbius transformation for each $ g \in G $, |
| + | then its [[Schwarzian derivative|Schwarzian derivative]] |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380118.png" /></td> </tr></table>
| + | $$ |
| + | Sf = { |
| + | \frac{f ^ {\prime \prime \prime } }{f ^ \prime } |
| + | } - { |
| + | \frac{3}{2} |
| + | } \left ( { |
| + | \frac{f ^ {\prime \prime } }{f ^ \prime } |
| + | } \right ) ^ {2} |
| + | $$ |
| | | |
− | belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380119.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380120.png" />. Moreover, the set of all such Schwarzian derivatives constitutes a bounded domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380121.png" /> including the open ball of radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380122.png" /> centred at the origin. This domain can be regarded as a realization of the [[Teichmüller space|Teichmüller space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380123.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380124.png" />, and the injection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380125.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380126.png" /> induced by the Schwarzian derivative is referred to as the Bers embedding. | + | belongs to $ A _ {2} ^ \infty ( D ^ {*} ,G ) $ |
| + | with $ \| {Sf } \| \leq 6 $. |
| + | Moreover, the set of all such Schwarzian derivatives constitutes a bounded domain in $ A _ {2} ^ \infty ( D ^ {*} ,G ) $ |
| + | including the open ball of radius $ 2 $ |
| + | centred at the origin. This domain can be regarded as a realization of the [[Teichmüller space|Teichmüller space]] $ T ( G ) $ |
| + | of $ G $, |
| + | and the injection of $ T ( G ) $ |
| + | into $ A _ {2} ^ \infty ( D ^ {*} ,G ) $ |
| + | induced by the Schwarzian derivative is referred to as the Bers embedding. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I. Kra, "Automorphic forms and Kleinian groups" , Benjamin (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Lehner, "Discontinuous groups and automorphic functions" , Amer. Math. Soc. (1964)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Lehner, "Automorphic forms" W.J. Harvey (ed.) , ''Discrete Groups and Automorphic Functions'' , Acad. Press (1977) pp. 73–120</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> S. Nag, "The complex analytic theory of Teichmüller spaces" , Wiley (1988)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> D. Niebur, M. Sheingorn, "Characterization of Fuchsian groups whose integrable forms are bounded" ''Ann. of Math.'' , '''106''' (1977) pp. 239–258</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> Ch. Pommerenke, "On inclusion relations for spaces of automorphic forms" W.E. Kirwan (ed.) L. Zalcman (ed.) , ''Advances in Complex Function Theory'' , ''Lecture Notes in Mathematics'' , '''505''' , Springer (1976) pp. 92–100</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I. Kra, "Automorphic forms and Kleinian groups" , Benjamin (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Lehner, "Discontinuous groups and automorphic functions" , Amer. Math. Soc. (1964)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Lehner, "Automorphic forms" W.J. Harvey (ed.) , ''Discrete Groups and Automorphic Functions'' , Acad. Press (1977) pp. 73–120</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> S. Nag, "The complex analytic theory of Teichmüller spaces" , Wiley (1988)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> D. Niebur, M. Sheingorn, "Characterization of Fuchsian groups whose integrable forms are bounded" ''Ann. of Math.'' , '''106''' (1977) pp. 239–258</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> Ch. Pommerenke, "On inclusion relations for spaces of automorphic forms" W.E. Kirwan (ed.) L. Zalcman (ed.) , ''Advances in Complex Function Theory'' , ''Lecture Notes in Mathematics'' , '''505''' , Springer (1976) pp. 92–100</TD></TR></table> |
A complex Banach space of holomorphic automorphic forms introduced by L. Bers (1961). Let $ D $
be an open set of the Riemann sphere $ {\widehat{\mathbf C} } = \mathbf C \cup \{ \infty \} $
whose boundary consists of more than two points. Then $ D $
carries a unique complete conformal metric $ \lambda ( z ) | {dz } | $
on $ D $
with curvature $ - 4 $,
known as the hyperbolic metric on $ D $.
Let $ G $
be a properly discontinuous group of conformal mappings of $ D $
onto itself (cf. also Kleinian group; Conformal mapping). Typical examples of $ G $
are Kleinian groups (cf. also Kleinian group), that is, a group of Möbius transformations (cf. also Fractional-linear mapping) of $ {\widehat{\mathbf C} } $
acting properly discontinuously on an open set of $ {\widehat{\mathbf C} } $.
By the conformal invariance, the hyperbolic area measure $ \lambda ( z ) ^ {2} dx dy $(
$ z = x + iy $)
on $ D $
is projected to an area measure $ d \mu $
on the orbit space $ D/G $.
In other words, let $ d \mu ( w ) = \lambda ( z ) ^ {2} dx dy $,
$ w = \pi ( z ) $,
where $ \pi : D \rightarrow {D/G } $
is the natural projection.
Fix an integer $ q \geq 2 $.
A holomorphic function $ \varphi $
on $ D $
is called an automorphic form of weight $ - 2q $
for $ G $
if $ ( \varphi \circ g ) \cdot ( g ^ \prime ) ^ {q} = \varphi $
for all $ g \in G $.
Then $ \lambda ^ {- q } | \varphi | $
is invariant under the action of $ G $
and hence may be considered as a function on $ D/G $.
The Bers space $ A _ {q} ^ {p} ( D,G ) $,
where $ 1 \leq p \leq \infty $,
is the complex Banach space of holomorphic automorphic forms $ \varphi $
of weight $ - 2q $
on $ D $
for $ G $
such that the function $ \lambda ^ {- q } | \varphi | $
on $ D/G $
belongs to the space $ L _ {p} $
with respect to the measure $ \mu $.
The norm in $ A _ {q} ^ {p} ( D,G ) $
is thus given by
$$
\left \| \varphi \right \| = ( {\int\limits \int\limits } _ {D/G } {\lambda ^ {- pq } \left | \varphi \right | ^ {p} } {d \mu } ) ^ {1/p }
$$
if $ 1 \leq p < \infty $,
and
$$
\left \| \varphi \right \| = \sup _ {D/G } \lambda ^ {- q } \left | \varphi \right |
$$
if $ p = \infty $.
Automorphic forms in $ A _ {q} ^ {p} ( D,G ) $
are said to be $ p $-
integrable if $ 1 \leq p < \infty $,
and bounded if $ p = \infty $.
When $ G $
is trivial, $ A _ {q} ^ {p} ( D,G ) $
is abbreviated to $ A _ {q} ^ {p} ( D ) $.
Note that $ A _ {q} ^ \infty ( D,G ) $
is isometrically embedded as a subspace of $ A _ {q} ^ \infty ( D ) $.
Some properties of Bers spaces.
1) Let $ {1 / p } + {1 / {p ^ \prime } } = 1 $.
The Petersson scalar product of $ \varphi \in A _ {q} ^ {p} ( D,G ) $
and $ \psi \in A _ {q} ^ {p ^ \prime } ( D,G ) $
is defined by
$$
\left ( \varphi , \psi \right ) = {\int\limits \int\limits } _ {D/G } {\lambda ^ {- 2q } \varphi {\overline \psi \; } } {d \mu } .
$$
If $ 1 \leq p < \infty $,
then the Petersson scalar product establishes an anti-linear isomorphism of $ A _ {q} ^ {p ^ \prime } ( D,G ) $
onto the dual space of $ A _ {q} ^ {p} ( D,G ) $,
whose operator norm is between $ ( q - 1 ) ( 2q - 1 ) ^ {- 1 } $
and $ 1 $.
2) The Poincaré (theta-) series of a holomorphic function $ f $
on $ D $
is defined by
$$
\Theta f = \sum _ {g \in G } ( f \circ g ) \cdot ( g ^ \prime ) ^ {q}
$$
whenever the right-hand side converges absolutely and uniformly on compact subsets of $ D $(
cf. Absolutely convergent series; Uniform convergence). Then $ \Theta f $
is an automorphic form of weight $ - 2q $
on $ D $
for $ G $.
Moreover, $ \Theta $
gives a continuous linear mapping of $ A _ {q} ^ {1} ( D ) $
onto $ A _ {q} ^ {1} ( D,G ) $
of norm at most $ 1 $.
For every $ \varphi \in A _ {q} ^ {p} ( D,G ) $
there exists an $ f \in A _ {q} ^ {p} ( D ) $
with $ \| f \| \leq ( 2q - 1 ) ( q - 1 ) ^ {- 1 } \| \varphi \| $
such that $ \varphi = \Theta f $.
3) Let $ B $
be the set of branch points of the natural projection $ \pi $.
Assume that: i) $ D/G $
is obtained from a (connected) closed Riemann surface of genus $ g $
by deleting precisely $ m $
points; and ii) $ \pi ( B ) $
consists of exactly $ n $
points $ p _ {1} \dots p _ {n} $(
possibly, $ m = 0 $
or $ n =0 $).
For each $ k = 1 \dots n $,
let $ \nu _ {k} $
be the common multiplicity of $ \pi $
at points of $ \pi ^ {- 1 } ( p _ {k} ) $.
Then $ A _ {q} ^ {p} ( D,G ) = A _ {q} ^ \infty ( D,G ) $
for $ 1 \leq p \leq \infty $
and
$$
{ \mathop{\rm dim} } A _ {q} ^ \infty ( D,G ) =
$$
$$
=
( 2q - 1 ) ( g - 1 ) + ( q - 1 ) m + \sum _ {k =1 } ^ { n } \left [ q \left ( 1 - {
\frac{1}{\nu _ {k} }
} \right ) \right ] ,
$$
where $ [ x ] $
denotes the largest integer that does not exceed $ x $.
4) Consider the particular case where $ D $
is the unit disc. Then $ G $
is a Fuchsian group and $ \lambda ( z ) = ( 1 - | z | ^ {2} ) ^ {- 1 } $.
It had been conjectured that $ A _ {q} ^ {1} ( D,G ) \subset A _ {q} ^ \infty ( D,G ) $
for any $ G $,
until Ch. Pommerenke [a6] constructed a counterexample. In [a5] D. Niebur and M. Sheingorn characterized the Fuchsian groups $ G $
for which the inclusion relation holds. In particular, if $ G $
is finitely generated, then $ A _ {q} ^ {1} ( D,G ) \subset A _ {q} ^ \infty ( D,G ) $.
5) Let $ G $
be a Fuchsian group acting on the unit disc $ D $.
It also preserves $ D ^ {*} = {\widehat{\mathbf C} } \setminus {\overline{D}\; } $,
the outside of the unit circle. If $ f $
is conformal on $ D ^ {*} $
and can be extended to a quasi-conformal mapping of $ {\widehat{\mathbf C} } $
onto itself such that $ f \circ g \circ f ^ {- 1 } $
is a Möbius transformation for each $ g \in G $,
then its Schwarzian derivative
$$
Sf = {
\frac{f ^ {\prime \prime \prime } }{f ^ \prime }
} - {
\frac{3}{2}
} \left ( {
\frac{f ^ {\prime \prime } }{f ^ \prime }
} \right ) ^ {2}
$$
belongs to $ A _ {2} ^ \infty ( D ^ {*} ,G ) $
with $ \| {Sf } \| \leq 6 $.
Moreover, the set of all such Schwarzian derivatives constitutes a bounded domain in $ A _ {2} ^ \infty ( D ^ {*} ,G ) $
including the open ball of radius $ 2 $
centred at the origin. This domain can be regarded as a realization of the Teichmüller space $ T ( G ) $
of $ G $,
and the injection of $ T ( G ) $
into $ A _ {2} ^ \infty ( D ^ {*} ,G ) $
induced by the Schwarzian derivative is referred to as the Bers embedding.
References
[a1] | I. Kra, "Automorphic forms and Kleinian groups" , Benjamin (1972) |
[a2] | J. Lehner, "Discontinuous groups and automorphic functions" , Amer. Math. Soc. (1964) |
[a3] | J. Lehner, "Automorphic forms" W.J. Harvey (ed.) , Discrete Groups and Automorphic Functions , Acad. Press (1977) pp. 73–120 |
[a4] | S. Nag, "The complex analytic theory of Teichmüller spaces" , Wiley (1988) |
[a5] | D. Niebur, M. Sheingorn, "Characterization of Fuchsian groups whose integrable forms are bounded" Ann. of Math. , 106 (1977) pp. 239–258 |
[a6] | Ch. Pommerenke, "On inclusion relations for spaces of automorphic forms" W.E. Kirwan (ed.) L. Zalcman (ed.) , Advances in Complex Function Theory , Lecture Notes in Mathematics , 505 , Springer (1976) pp. 92–100 |