Difference between revisions of "Bergman-Weil representation"
Ulf Rehmann (talk | contribs) m (moved Bergman–Weil representation to Bergman-Weil representation: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | b0155701.png | ||
+ | $#A+1 = 57 n = 0 | ||
+ | $#C+1 = 57 : ~/encyclopedia/old_files/data/B015/B.0105570 Bergman\ANDWeil representation, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Bergman–Weil formula, Weil formula'' | ''Bergman–Weil formula, Weil formula'' | ||
− | An integral representation of holomorphic functions, obtained by S. Bergman [[#References|[1]]] and A. Weil [[#References|[2]]] and defined as follows. Let | + | An integral representation of holomorphic functions, obtained by S. Bergman [[#References|[1]]] and A. Weil [[#References|[2]]] and defined as follows. Let $ D $ |
+ | be a domain of holomorphy in $ \mathbf C ^ {n} $, | ||
+ | let the functions $ W _ {1} \dots W _ {j} $ | ||
+ | be holomorphic in $ D $ | ||
+ | and let $ V = \{ {z \in D } : {| W _ {k} (z) | < 1, k = 1 \dots N } \} $ | ||
+ | compactly belong to $ D $. | ||
+ | It is then possible to represent any function $ f $ | ||
+ | holomorphic in $ V $ | ||
+ | and continuous on $ \overline{V}\; $ | ||
+ | at any point $ z \in V $ | ||
+ | by the formula: | ||
+ | |||
+ | $$ \tag{* } | ||
+ | f(z) = { | ||
+ | \frac{1}{(2 \pi i) ^ {n} } | ||
+ | } | ||
+ | \sum \int\limits | ||
− | + | \frac{f ( \zeta ) \mathop{\rm det} (P _ {ij _ {k} } ) }{\prod _ { k=1 } ^ { n } | |
+ | (W _ {j _ {k} } ( \zeta ) - W _ {j _ {k} } (z)) } | ||
+ | \ | ||
+ | d \zeta , | ||
+ | $$ | ||
− | where the summation is performed over all < | + | where the summation is performed over all $ j _ {1} < \dots < j _ {n} $, |
+ | while the integration is carried out over suitably-oriented $ n $- | ||
+ | dimensional surfaces $ \sigma _ {j _ {1} \dots j _ {n} } $, | ||
+ | forming the skeleton of the domain $ V $( | ||
+ | cf. [[Analytic polyhedron|Analytic polyhedron]]), $ d \zeta = d \zeta _ {1} \wedge \dots \wedge d \zeta _ {n} $. | ||
+ | Here the functions $ P _ {ij } ( \zeta , z) $ | ||
+ | are holomorphic in the domain $ D \times D $ | ||
+ | and are defined, in accordance with Hefer's lemma [[#References|[3]]], by the equations | ||
− | + | $$ | |
+ | W _ {j} ( \zeta ) - W _ {j} (z) = \ | ||
+ | \sum _ { i=1 } ^ { n } | ||
+ | ( \zeta _ {i} - z _ {i} ) P _ {ij} ( \zeta , z). | ||
+ | $$ | ||
The integral representation (*) is called the Bergman–Weil representation. | The integral representation (*) is called the Bergman–Weil representation. | ||
− | The domains | + | The domains $ V $ |
+ | appearing in the Bergman–Weil representation are called Weil domains; an additional condition must usually be imposed, viz. that the ranks of the matrices $ ( \partial W _ {j _ \nu } / \partial z _ \mu ) $, | ||
+ | $ \nu = 1 \dots k $, | ||
+ | $ \mu = 1 \dots n $, | ||
+ | $ k \leq n $, | ||
+ | on the corresponding sets | ||
+ | |||
+ | $$ | ||
+ | \{ {z \in \overline{V}\; } : {| W _ {j _ {1} } | | ||
+ | = \dots = | W _ {j _ {k} } | = 1 } \} | ||
+ | $$ | ||
+ | |||
+ | are maximal $ (=k) $ | ||
+ | for all $ j _ {1} < \dots < j _ {k} $( | ||
+ | such Weil domains are called regular). The Weil domains in the Bergman–Weil representations may be replaced by analytic polyhedra $ U $ | ||
+ | compactly belonging to D, | ||
− | + | $$ | |
+ | U = \{ {z \in D } : {W _ {j} (z) \in D _ {j} ,\ | ||
+ | j =1 \dots N } \} | ||
+ | , | ||
+ | $$ | ||
− | are | + | where the $ D _ {j} $ |
+ | are bounded domains with piecewise-smooth boundaries $ \partial D _ {j} $ | ||
+ | in the plane $ \mathbf C $. | ||
+ | The Bergman–Weil representation defines the value of a holomorphic function $ f $ | ||
+ | inside the analytic polyhedron $ U $ | ||
+ | from the values of $ f $ | ||
+ | on the skeleton $ \sigma $; | ||
+ | for $ n > 1 $ | ||
+ | the dimension of $ \sigma $ | ||
+ | is strictly lower than that of $ \partial U $. | ||
+ | If $ n = 1 $, | ||
+ | analytic polyhedra become degenerate in a domain with piecewise-smooth boundary, the skeleton and the boundary become identical, and if, moreover, $ N = 1 $ | ||
+ | and $ W(z) = z $, | ||
+ | then the Bergman–Weil representation becomes identical with Cauchy's integral formula. | ||
− | + | An important property of the Bergman–Weil representation is that its kernel is holomorphic in $ z $. | |
+ | Accordingly, if the holomorphic function $ f $ | ||
+ | is replaced by an arbitrary function which is integrable over $ \sigma $, | ||
+ | then the right-hand side of the Weil representation gives a function which is holomorphic everywhere in $ U $ | ||
+ | and almost-everywhere in $ D \setminus \partial U $; | ||
+ | such functions are called integrals of Bergman–Weil type. If $ f $ | ||
+ | is holomorphic in $ U $ | ||
+ | and continuous on $ \overline{U}\; $, | ||
+ | then its integral of Bergman–Weil type is zero almost-everywhere on $ D \setminus \overline{U}\; $. | ||
− | + | Bergman–Weil representations in a Weil domain $ V $ | |
+ | yield, after the substitution | ||
− | + | $$ | |
+ | (W _ {j _ {k} } ( \zeta ) - W _ {j _ {k} } (z)) ^ {-1} = \ | ||
+ | \sum _ { v=0 } ^ \infty | ||
− | + | \frac{W _ {j _ {k} } ^ { v } (z) }{W _ {j _ {k} } ^ { v+1 } ( \zeta ) } | |
− | + | $$ | |
the Weil decomposition | the Weil decomposition | ||
− | + | $$ | |
+ | f (z) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \sum _ {s _ {k} \geq 0 } \sum _ {j _ {1} < \dots < j _ {k} } Q _ {j _ {1} \dots j _ {n} s _ {1} \dots s _ {n} } (z) (W _ {j _ {1} } ^ { s _ {1} } | ||
+ | (z) \dots W _ {j _ {k} } ^ { s _ {k} } (z)) | ||
+ | $$ | ||
− | into a series of functions, holomorphic in | + | into a series of functions, holomorphic in $ D $, |
+ | and this series is uniformly convergent on compact subsets of $ V $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.B. Bergman, ''Mat. Sb.'' , '''1 (43)''' (1936) pp. 242–257</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Weil, "L'intégrale de Cauchy et les fonctions de plusieurs variables" ''Math. Ann.'' , '''111''' (1935) pp. 178–182</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.B. Bergman, ''Mat. Sb.'' , '''1 (43)''' (1936) pp. 242–257</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Weil, "L'intégrale de Cauchy et les fonctions de plusieurs variables" ''Math. Ann.'' , '''111''' (1935) pp. 178–182</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.M. [G.M. Khenkin] Henkin, J. Leiterer, "Theory of functions on complex manifolds" , Birkhäuser (1983)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.M. [G.M. Khenkin] Henkin, J. Leiterer, "Theory of functions on complex manifolds" , Birkhäuser (1983)</TD></TR></table> |
Latest revision as of 10:58, 29 May 2020
Bergman–Weil formula, Weil formula
An integral representation of holomorphic functions, obtained by S. Bergman [1] and A. Weil [2] and defined as follows. Let $ D $ be a domain of holomorphy in $ \mathbf C ^ {n} $, let the functions $ W _ {1} \dots W _ {j} $ be holomorphic in $ D $ and let $ V = \{ {z \in D } : {| W _ {k} (z) | < 1, k = 1 \dots N } \} $ compactly belong to $ D $. It is then possible to represent any function $ f $ holomorphic in $ V $ and continuous on $ \overline{V}\; $ at any point $ z \in V $ by the formula:
$$ \tag{* } f(z) = { \frac{1}{(2 \pi i) ^ {n} } } \sum \int\limits \frac{f ( \zeta ) \mathop{\rm det} (P _ {ij _ {k} } ) }{\prod _ { k=1 } ^ { n } (W _ {j _ {k} } ( \zeta ) - W _ {j _ {k} } (z)) } \ d \zeta , $$
where the summation is performed over all $ j _ {1} < \dots < j _ {n} $, while the integration is carried out over suitably-oriented $ n $- dimensional surfaces $ \sigma _ {j _ {1} \dots j _ {n} } $, forming the skeleton of the domain $ V $( cf. Analytic polyhedron), $ d \zeta = d \zeta _ {1} \wedge \dots \wedge d \zeta _ {n} $. Here the functions $ P _ {ij } ( \zeta , z) $ are holomorphic in the domain $ D \times D $ and are defined, in accordance with Hefer's lemma [3], by the equations
$$ W _ {j} ( \zeta ) - W _ {j} (z) = \ \sum _ { i=1 } ^ { n } ( \zeta _ {i} - z _ {i} ) P _ {ij} ( \zeta , z). $$
The integral representation (*) is called the Bergman–Weil representation.
The domains $ V $ appearing in the Bergman–Weil representation are called Weil domains; an additional condition must usually be imposed, viz. that the ranks of the matrices $ ( \partial W _ {j _ \nu } / \partial z _ \mu ) $, $ \nu = 1 \dots k $, $ \mu = 1 \dots n $, $ k \leq n $, on the corresponding sets
$$ \{ {z \in \overline{V}\; } : {| W _ {j _ {1} } | = \dots = | W _ {j _ {k} } | = 1 } \} $$
are maximal $ (=k) $ for all $ j _ {1} < \dots < j _ {k} $( such Weil domains are called regular). The Weil domains in the Bergman–Weil representations may be replaced by analytic polyhedra $ U $ compactly belonging to D,
$$ U = \{ {z \in D } : {W _ {j} (z) \in D _ {j} ,\ j =1 \dots N } \} , $$
where the $ D _ {j} $ are bounded domains with piecewise-smooth boundaries $ \partial D _ {j} $ in the plane $ \mathbf C $. The Bergman–Weil representation defines the value of a holomorphic function $ f $ inside the analytic polyhedron $ U $ from the values of $ f $ on the skeleton $ \sigma $; for $ n > 1 $ the dimension of $ \sigma $ is strictly lower than that of $ \partial U $. If $ n = 1 $, analytic polyhedra become degenerate in a domain with piecewise-smooth boundary, the skeleton and the boundary become identical, and if, moreover, $ N = 1 $ and $ W(z) = z $, then the Bergman–Weil representation becomes identical with Cauchy's integral formula.
An important property of the Bergman–Weil representation is that its kernel is holomorphic in $ z $. Accordingly, if the holomorphic function $ f $ is replaced by an arbitrary function which is integrable over $ \sigma $, then the right-hand side of the Weil representation gives a function which is holomorphic everywhere in $ U $ and almost-everywhere in $ D \setminus \partial U $; such functions are called integrals of Bergman–Weil type. If $ f $ is holomorphic in $ U $ and continuous on $ \overline{U}\; $, then its integral of Bergman–Weil type is zero almost-everywhere on $ D \setminus \overline{U}\; $.
Bergman–Weil representations in a Weil domain $ V $ yield, after the substitution
$$ (W _ {j _ {k} } ( \zeta ) - W _ {j _ {k} } (z)) ^ {-1} = \ \sum _ { v=0 } ^ \infty \frac{W _ {j _ {k} } ^ { v } (z) }{W _ {j _ {k} } ^ { v+1 } ( \zeta ) } $$
the Weil decomposition
$$ f (z) = $$
$$ = \ \sum _ {s _ {k} \geq 0 } \sum _ {j _ {1} < \dots < j _ {k} } Q _ {j _ {1} \dots j _ {n} s _ {1} \dots s _ {n} } (z) (W _ {j _ {1} } ^ { s _ {1} } (z) \dots W _ {j _ {k} } ^ { s _ {k} } (z)) $$
into a series of functions, holomorphic in $ D $, and this series is uniformly convergent on compact subsets of $ V $.
References
[1] | S.B. Bergman, Mat. Sb. , 1 (43) (1936) pp. 242–257 |
[2] | A. Weil, "L'intégrale de Cauchy et les fonctions de plusieurs variables" Math. Ann. , 111 (1935) pp. 178–182 |
[3] | V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian) |
Comments
References
[a1] | G.M. [G.M. Khenkin] Henkin, J. Leiterer, "Theory of functions on complex manifolds" , Birkhäuser (1983) |
Bergman-Weil representation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bergman-Weil_representation&oldid=46015