Namespaces
Variants
Actions

Difference between revisions of "Asymptotically-unbiased test"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A concept indicating that the test is unbiased in the limit. For example, in the case of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a0138301.png" /> independent samples from a one-dimensional distribution depending on a parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a0138302.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a0138303.png" /> be the null hypothesis: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a0138304.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a0138305.png" /> be the alternative:
+
<!--
 +
a0138301.png
 +
$#A+1 = 15 n = 0
 +
$#C+1 = 15 : ~/encyclopedia/old_files/data/A013/A.0103830 Asymptotically\AAhunbiased test
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a0138306.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The critical set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a0138307.png" /> in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a0138308.png" />-dimensional Euclidean space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a0138309.png" /> is an asymptotically-unbiased test of the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a01383010.png" /> with level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a01383011.png" /> if
+
A concept indicating that the test is unbiased in the limit. For example, in the case of  $  n $
 +
independent samples from a one-dimensional distribution depending on a parameter  $  \theta \in \Omega $,  
 +
let  $  H $
 +
be the null hypothesis: $  \theta \in \Omega _ {H} $,
 +
and let  $  K $
 +
be the alternative:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a01383012.png" /></td> </tr></table>
+
$$
 +
\theta  \in  \Omega _ {K} ,\  \Omega _ {H} \cup \Omega _ {K}  = \Omega ,\ \
 +
\Omega _ {H} \cup \Omega _ {K}  = \emptyset .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a01383013.png" /></td> </tr></table>
+
The critical set  $  R _ {n} $
 +
in the  $  n $-
 +
dimensional Euclidean space,  $  n=1, 2 \dots $
 +
is an asymptotically-unbiased test of the hypothesis  $  H $
 +
with level  $  \alpha $
 +
if
 +
 
 +
$$
 +
\lim\limits _ {n \rightarrow \infty }  {\mathsf P} ( R _ {n} \mid  \theta )  \leq  \alpha ,
 +
\  \theta \in \Omega _ {H} ,
 +
$$
 +
 
 +
$$
 +
\alpha  \leq  \lim\limits _ {n \rightarrow \infty }  {\mathsf P} (
 +
R _ {n} \mid  \theta ),\  \theta \in \Omega _ {K} .
 +
$$
  
 
The function
 
The function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a01383014.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {n \rightarrow \infty }  {\mathsf P} ( R _ {n} \mid  \theta )
 +
$$
  
is called the asymptotic power function of the test <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013830/a01383015.png" />.
+
is called the asymptotic power function of the test $  R _ {n} $.

Revision as of 18:48, 5 April 2020


A concept indicating that the test is unbiased in the limit. For example, in the case of $ n $ independent samples from a one-dimensional distribution depending on a parameter $ \theta \in \Omega $, let $ H $ be the null hypothesis: $ \theta \in \Omega _ {H} $, and let $ K $ be the alternative:

$$ \theta \in \Omega _ {K} ,\ \Omega _ {H} \cup \Omega _ {K} = \Omega ,\ \ \Omega _ {H} \cup \Omega _ {K} = \emptyset . $$

The critical set $ R _ {n} $ in the $ n $- dimensional Euclidean space, $ n=1, 2 \dots $ is an asymptotically-unbiased test of the hypothesis $ H $ with level $ \alpha $ if

$$ \lim\limits _ {n \rightarrow \infty } {\mathsf P} ( R _ {n} \mid \theta ) \leq \alpha , \ \theta \in \Omega _ {H} , $$

$$ \alpha \leq \lim\limits _ {n \rightarrow \infty } {\mathsf P} ( R _ {n} \mid \theta ),\ \theta \in \Omega _ {K} . $$

The function

$$ \lim\limits _ {n \rightarrow \infty } {\mathsf P} ( R _ {n} \mid \theta ) $$

is called the asymptotic power function of the test $ R _ {n} $.

How to Cite This Entry:
Asymptotically-unbiased test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Asymptotically-unbiased_test&oldid=45237
This article was adapted from an original article by O.V. Shalaevskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article