Difference between revisions of "Angular boundary value"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | a0125101.png | ||
+ | $#A+1 = 18 n = 0 | ||
+ | $#C+1 = 18 : ~/encyclopedia/old_files/data/A012/A.0102510 Angular boundary value, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''boundary value along a non-tangential path'' | ''boundary value along a non-tangential path'' | ||
− | The value associated to a complex function | + | The value associated to a complex function $ f (x) $ |
+ | defined in the unit disc $ D = \{ {z \in \mathbf C } : {| z | < 1 } \} $ | ||
+ | at a boundary point $ \zeta = e ^ {i \theta } $, | ||
+ | equal to the limit | ||
− | + | $$ | |
+ | \lim\limits _ { | ||
+ | \begin{array}{c} | ||
+ | z \in S \\ | ||
+ | z \rightarrow \zeta | ||
+ | \end{array} | ||
+ | } \ | ||
+ | f (z) = f ^ {*} ( \zeta ) | ||
+ | $$ | ||
− | of | + | of $ f (z) $ |
+ | on the set of points of the angular domain | ||
− | + | $$ | |
+ | S ( \zeta , \epsilon ) = \ | ||
+ | \left \{ {z = r e ^ {i \phi } \in D } : {| | ||
+ | \mathop{\rm arg} ( e ^ {i \theta } - z ) | < | ||
+ | \frac \pi {2} | ||
− | under the condition that this limit exists for all < | + | - \epsilon } \right \} |
+ | $$ | ||
+ | |||
+ | under the condition that this limit exists for all $ \epsilon $, | ||
+ | $ 0 < \epsilon < \pi / 2 $, | ||
+ | and hence does not depend on $ \epsilon $. | ||
+ | The term is sometimes applied in a more general sense to functions $ f (z) $ | ||
+ | given in an arbitrary (including a higher-dimensional) domain $ D $; | ||
+ | for $ S ( \zeta , \epsilon ) $ | ||
+ | one takes the intersection with $ D $ | ||
+ | of an angular (or conical) domain with vertex $ \zeta \in \partial D $, | ||
+ | with axis normal to the boundary $ \partial D $ | ||
+ | at $ \zeta $ | ||
+ | and with angle $ \pi / 2 - \epsilon $, | ||
+ | $ 0 < \epsilon < \pi / 2 $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''1–2''' , Chelsea (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.I. [I.I. Privalov] Priwalow, "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''1–2''' , Chelsea (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.I. [I.I. Privalov] Priwalow, "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
An angular boundary value is also called a non-tangential boundary value. Cf. [[Boundary properties of analytic functions|Boundary properties of analytic functions]]. | An angular boundary value is also called a non-tangential boundary value. Cf. [[Boundary properties of analytic functions|Boundary properties of analytic functions]]. |
Latest revision as of 18:47, 5 April 2020
boundary value along a non-tangential path
The value associated to a complex function $ f (x) $ defined in the unit disc $ D = \{ {z \in \mathbf C } : {| z | < 1 } \} $ at a boundary point $ \zeta = e ^ {i \theta } $, equal to the limit
$$ \lim\limits _ { \begin{array}{c} z \in S \\ z \rightarrow \zeta \end{array} } \ f (z) = f ^ {*} ( \zeta ) $$
of $ f (z) $ on the set of points of the angular domain
$$ S ( \zeta , \epsilon ) = \ \left \{ {z = r e ^ {i \phi } \in D } : {| \mathop{\rm arg} ( e ^ {i \theta } - z ) | < \frac \pi {2} - \epsilon } \right \} $$
under the condition that this limit exists for all $ \epsilon $, $ 0 < \epsilon < \pi / 2 $, and hence does not depend on $ \epsilon $. The term is sometimes applied in a more general sense to functions $ f (z) $ given in an arbitrary (including a higher-dimensional) domain $ D $; for $ S ( \zeta , \epsilon ) $ one takes the intersection with $ D $ of an angular (or conical) domain with vertex $ \zeta \in \partial D $, with axis normal to the boundary $ \partial D $ at $ \zeta $ and with angle $ \pi / 2 - \epsilon $, $ 0 < \epsilon < \pi / 2 $.
References
[1] | A.I. Markushevich, "Theory of functions of a complex variable" , 1–2 , Chelsea (1977) (Translated from Russian) |
[2] | I.I. [I.I. Privalov] Priwalow, "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian) |
Comments
An angular boundary value is also called a non-tangential boundary value. Cf. Boundary properties of analytic functions.
Angular boundary value. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Angular_boundary_value&oldid=45187