Namespaces
Variants
Actions

Difference between revisions of "Amalgam of groups"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A family of groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a0121201.png" />, that satisfies the condition that the intersection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a0121202.png" /> is a subgroup in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a0121203.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a0121204.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a0121205.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a0121206.png" />. An example of an amalgam of groups is an arbitrary family of subgroups of a given group. An imbedding of an amalgam of groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a0121207.png" /> into a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a0121208.png" /> is a one-to-one mapping of the union <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a0121209.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212010.png" /> whose restriction to each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212011.png" /> is an isomorphism. An amalgam of groups in which all intersections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212012.png" /> are identical (and equal to, say, a subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212013.png" />) is imbeddable in the group that is the free product of the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212014.png" /> with the amalgamated subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212015.png" />. On the other hand, there exists an amalgam of four Abelian groups that is not imbeddable in a group. The principal problem concerning amalgams of groups is, generally speaking, as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212016.png" /> be possible properties of groups. The question to be answered is the nature of the conditions under which an amalgam of groups with the property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212017.png" /> is imbeddable in a group with the property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212018.png" />. It was found that all amalgams of two finite groups are imbeddable in a finite group. An amalgam of three Abelian groups is imbeddable in an Abelian group. An amalgam of four Abelian groups imbedded in a group is contained in an Abelian group. There exists an amalgam of five Abelian groups which is imbeddable in a group, but not in an Abelian group. Another problem that has been studied is the imbeddability of an amalgam of groups if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212019.png" /> denote solvability, nilpotency, periodicity, local finiteness, etc. (in different combinations).
+
<!--
 +
a0121201.png
 +
$#A+1 = 75 n = 0
 +
$#C+1 = 75 : ~/encyclopedia/old_files/data/A012/A.0102120 Amalgam of groups
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
 +
{{TEX|auto}}
 +
{{TEX|done}}
  
 +
A family of groups  $  G _  \alpha  , \alpha \in I $,
 +
that satisfies the condition that the intersection  $  G _  \alpha  \cap G _  \beta  $
 +
is a subgroup in  $  G _  \alpha  $
 +
and  $  G _  \beta  $
 +
for any  $  \alpha , \beta $
 +
from  $  I $.
 +
An example of an amalgam of groups is an arbitrary family of subgroups of a given group. An imbedding of an amalgam of groups  $  A = \{ {G _  \alpha  } : {\alpha \in I } \} $
 +
into a group  $  G $
 +
is a one-to-one mapping of the union  $  \cup _ {\alpha \in I }  G _  \alpha  $
 +
into  $  G $
 +
whose restriction to each  $  G _  \alpha  $
 +
is an isomorphism. An amalgam of groups in which all intersections  $  G _  \alpha  \cap G _  \beta  $
 +
are identical (and equal to, say, a subgroup  $  H $)
 +
is imbeddable in the group that is the free product of the groups  $  G _  \alpha  $
 +
with the amalgamated subgroup  $  H $.
 +
On the other hand, there exists an amalgam of four Abelian groups that is not imbeddable in a group. The principal problem concerning amalgams of groups is, generally speaking, as follows. Let  $  \sigma , \tau $
 +
be possible properties of groups. The question to be answered is the nature of the conditions under which an amalgam of groups with the property  $  \sigma $
 +
is imbeddable in a group with the property  $  \tau $.
 +
It was found that all amalgams of two finite groups are imbeddable in a finite group. An amalgam of three Abelian groups is imbeddable in an Abelian group. An amalgam of four Abelian groups imbedded in a group is contained in an Abelian group. There exists an amalgam of five Abelian groups which is imbeddable in a group, but not in an Abelian group. Another problem that has been studied is the imbeddability of an amalgam of groups if  $  \sigma , \tau $
 +
denote solvability, nilpotency, periodicity, local finiteness, etc. (in different combinations).
  
 
====Comments====
 
====Comments====
In the definition of amalgam above, think of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212020.png" /> as all being subsets of some large set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212021.png" />. The amalgamated product of groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212022.png" /> "over a common subgroup U"  is constructed as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212023.png" /> be a set of groups indexed by the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212024.png" />. For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212025.png" /> let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212026.png" /> be a subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212027.png" /> and for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212028.png" /> let there be an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212029.png" /> identifying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212031.png" />. Consider the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212032.png" /> of all words
+
In the definition of amalgam above, think of the $  G _  \alpha  $
 +
as all being subsets of some large set $  X $.  
 +
The amalgamated product of groups  $  G _ {i} $"
 +
over a common subgroup U"  is constructed as follows. Let $  G _ {i} $
 +
be a set of groups indexed by the set $  I $.  
 +
For each $  i $
 +
let $  U _ {i} $
 +
be a subgroup of $  G _ {i} $
 +
and for each $  i $
 +
let there be an isomorphism $  \phi _ {i} : U _ {i} \rightarrow U $
 +
identifying $  U _ {i} $
 +
and $  U $.  
 +
Consider the set $  \widetilde{G}  $
 +
of all words
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212033.png" /></td> </tr></table>
+
$$
 +
a _ {1} \dots a _ {t}  $$
  
with each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212034.png" /> from some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212035.png" />, and consider the following elementary equivalences
+
with each a _ {i} $
 +
from some $  G _ {j} $,  
 +
and consider the following elementary equivalences
  
1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212036.png" /> then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212037.png" /> is equivalent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212038.png" />;
+
1) if $  a _ {i} = 1 $
 +
then  $  a _ {1} \dots a _ {i-1} a _ {i} a _ {i+1} {} \dots a _ {t} $
 +
is equivalent to $  a _ {1} \dots a _ {i-1} a _ {i+1} \dots a _ {t} $;
  
2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212040.png" /> belong to the same group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212042.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212043.png" /> then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212044.png" /> is equivalent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212045.png" />;
+
2) if a _ {i} $
 +
and a _ {i+1} $
 +
belong to the same group $  G _ {j} $
 +
and  $  a _ {i} a _ {i+1} = a _ {i}  ^  \prime  $
 +
in $  G _ {j} $
 +
then  $  a _ {1} \dots a _ {i-1} a _ {i} a _ {i+1} \dots a _ {t} $
 +
is equivalent to $  a _ {1} \dots a _ {i-1} a _ {i}  ^  \prime  a _ {i+2} \dots a _ {t} $;
  
3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212048.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212049.png" /> is equivalent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212050.png" />.
+
3) if $  a _ {i} = u _ {i} \in U _ {j} \subseteq G _ {j} $
 +
and $  b _ {i} = u _ {k} \in U _ {k} \subseteq G _ {k} $
 +
and $  \phi _ {k} ( u _ {k} ) = u = \phi _ {i} ( u _ {i} ) \in U $,  
 +
then $  a _ {1} \dots a _ {i-1} a _ {i} a _ {i+1} \dots a _ {t} $
 +
is equivalent to $  a _ {1} \dots a _ {i-1} b _ {i} a _ {i+1} \dots a _ {t} $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212051.png" /> be the equivalence relation generated by these elementary equivalences, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212052.png" /> is the amalgamated product of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212053.png" />, more precisely of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212054.png" /> (i.e. the free product with amalgamated subgroup of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212055.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212056.png" />); the group law is induced by concatenation.
+
Let $  \sim $
 +
be the equivalence relation generated by these elementary equivalences, then $  \widetilde{G}  / \sim $
 +
is the amalgamated product of the $  G _ {i} $,  
 +
more precisely of the $  ( G _ {i} , U _ {i} ) $(
 +
i.e. the free product with amalgamated subgroup of the $  G _ {i} $
 +
$  U $);  
 +
the group law is induced by concatenation.
  
Amalgamated products are non-trivial. This follows from the following canonical form theorem. For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212057.png" /> select a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212058.png" /> of left coset representatives of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212059.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212060.png" />. Then each word is equivalent to precisely one of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212061.png" /> with each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212062.png" /> in some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212066.png" /> belonging to different <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212067.png" />'s for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212068.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212069.png" /> one obtains of course the free product of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212070.png" />. A subgroup of a free product is itself a free product (Kurosh' theorem). Subgroups of a product with an amalgamated subgroup need not be themselves of this type. The reason is that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212071.png" /> is the amalgamated subgroup, then one can take subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212072.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212073.png" /> with different intersections with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212074.png" /> so that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212075.png" /> will amalgamate in various different ways. This leads to generalized amalgamated products and the notion of amalgam as defined above. The theory of these is still incomplete.
+
Amalgamated products are non-trivial. This follows from the following canonical form theorem. For each $  i $
 +
select a set $  R _ {i} $
 +
of left coset representatives of $  U $
 +
in $  G _ {i} $.  
 +
Then each word is equivalent to precisely one of the form $  uz _ {1} \dots z _ {t} $
 +
with each $  z _ {i} $
 +
in some $  R _ {j} $,  
 +
$  u \in U $
 +
and $  z _ {1} $
 +
and $  z _ {i+1} $
 +
belonging to different $  G _ {j} $'
 +
s for $  i = 1 \dots t-1 $.  
 +
If $  U = \{ e \} $
 +
one obtains of course the free product of the $  G _ {i} $.  
 +
A subgroup of a free product is itself a free product (Kurosh' theorem). Subgroups of a product with an amalgamated subgroup need not be themselves of this type. The reason is that if $  U $
 +
is the amalgamated subgroup, then one can take subgroups $  H _ {i} $
 +
of the $  G _ {i} $
 +
with different intersections with $  U $
 +
so that the $  H _ {i} $
 +
will amalgamate in various different ways. This leads to generalized amalgamated products and the notion of amalgam as defined above. The theory of these is still incomplete.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Hall jr.,  "The theory of groups" , Macmillan  (1959)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H. Neumann,  "Generalized free products with amalgamated subgroups I"  ''Amer. J. Math.'' , '''70'''  (1948)  pp. 590–625</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H. Neumann,  "Generalized free products with amalgamated subgroups II"  ''Amer. J. Math.'' , '''71'''  (1949)  pp. 491–540</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Hall jr.,  "The theory of groups" , Macmillan  (1959)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H. Neumann,  "Generalized free products with amalgamated subgroups I"  ''Amer. J. Math.'' , '''70'''  (1948)  pp. 590–625</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H. Neumann,  "Generalized free products with amalgamated subgroups II"  ''Amer. J. Math.'' , '''71'''  (1949)  pp. 491–540</TD></TR></table>

Latest revision as of 16:10, 1 April 2020


A family of groups $ G _ \alpha , \alpha \in I $, that satisfies the condition that the intersection $ G _ \alpha \cap G _ \beta $ is a subgroup in $ G _ \alpha $ and $ G _ \beta $ for any $ \alpha , \beta $ from $ I $. An example of an amalgam of groups is an arbitrary family of subgroups of a given group. An imbedding of an amalgam of groups $ A = \{ {G _ \alpha } : {\alpha \in I } \} $ into a group $ G $ is a one-to-one mapping of the union $ \cup _ {\alpha \in I } G _ \alpha $ into $ G $ whose restriction to each $ G _ \alpha $ is an isomorphism. An amalgam of groups in which all intersections $ G _ \alpha \cap G _ \beta $ are identical (and equal to, say, a subgroup $ H $) is imbeddable in the group that is the free product of the groups $ G _ \alpha $ with the amalgamated subgroup $ H $. On the other hand, there exists an amalgam of four Abelian groups that is not imbeddable in a group. The principal problem concerning amalgams of groups is, generally speaking, as follows. Let $ \sigma , \tau $ be possible properties of groups. The question to be answered is the nature of the conditions under which an amalgam of groups with the property $ \sigma $ is imbeddable in a group with the property $ \tau $. It was found that all amalgams of two finite groups are imbeddable in a finite group. An amalgam of three Abelian groups is imbeddable in an Abelian group. An amalgam of four Abelian groups imbedded in a group is contained in an Abelian group. There exists an amalgam of five Abelian groups which is imbeddable in a group, but not in an Abelian group. Another problem that has been studied is the imbeddability of an amalgam of groups if $ \sigma , \tau $ denote solvability, nilpotency, periodicity, local finiteness, etc. (in different combinations).

Comments

In the definition of amalgam above, think of the $ G _ \alpha $ as all being subsets of some large set $ X $. The amalgamated product of groups $ G _ {i} $" over a common subgroup U" is constructed as follows. Let $ G _ {i} $ be a set of groups indexed by the set $ I $. For each $ i $ let $ U _ {i} $ be a subgroup of $ G _ {i} $ and for each $ i $ let there be an isomorphism $ \phi _ {i} : U _ {i} \rightarrow U $ identifying $ U _ {i} $ and $ U $. Consider the set $ \widetilde{G} $ of all words

$$ a _ {1} \dots a _ {t} $$

with each $ a _ {i} $ from some $ G _ {j} $, and consider the following elementary equivalences

1) if $ a _ {i} = 1 $ then $ a _ {1} \dots a _ {i-1} a _ {i} a _ {i+1} {} \dots a _ {t} $ is equivalent to $ a _ {1} \dots a _ {i-1} a _ {i+1} \dots a _ {t} $;

2) if $ a _ {i} $ and $ a _ {i+1} $ belong to the same group $ G _ {j} $ and $ a _ {i} a _ {i+1} = a _ {i} ^ \prime $ in $ G _ {j} $ then $ a _ {1} \dots a _ {i-1} a _ {i} a _ {i+1} \dots a _ {t} $ is equivalent to $ a _ {1} \dots a _ {i-1} a _ {i} ^ \prime a _ {i+2} \dots a _ {t} $;

3) if $ a _ {i} = u _ {i} \in U _ {j} \subseteq G _ {j} $ and $ b _ {i} = u _ {k} \in U _ {k} \subseteq G _ {k} $ and $ \phi _ {k} ( u _ {k} ) = u = \phi _ {i} ( u _ {i} ) \in U $, then $ a _ {1} \dots a _ {i-1} a _ {i} a _ {i+1} \dots a _ {t} $ is equivalent to $ a _ {1} \dots a _ {i-1} b _ {i} a _ {i+1} \dots a _ {t} $.

Let $ \sim $ be the equivalence relation generated by these elementary equivalences, then $ \widetilde{G} / \sim $ is the amalgamated product of the $ G _ {i} $, more precisely of the $ ( G _ {i} , U _ {i} ) $( i.e. the free product with amalgamated subgroup of the $ G _ {i} $ $ U $); the group law is induced by concatenation.

Amalgamated products are non-trivial. This follows from the following canonical form theorem. For each $ i $ select a set $ R _ {i} $ of left coset representatives of $ U $ in $ G _ {i} $. Then each word is equivalent to precisely one of the form $ uz _ {1} \dots z _ {t} $ with each $ z _ {i} $ in some $ R _ {j} $, $ u \in U $ and $ z _ {1} $ and $ z _ {i+1} $ belonging to different $ G _ {j} $' s for $ i = 1 \dots t-1 $. If $ U = \{ e \} $ one obtains of course the free product of the $ G _ {i} $. A subgroup of a free product is itself a free product (Kurosh' theorem). Subgroups of a product with an amalgamated subgroup need not be themselves of this type. The reason is that if $ U $ is the amalgamated subgroup, then one can take subgroups $ H _ {i} $ of the $ G _ {i} $ with different intersections with $ U $ so that the $ H _ {i} $ will amalgamate in various different ways. This leads to generalized amalgamated products and the notion of amalgam as defined above. The theory of these is still incomplete.

References

[a1] M. Hall jr., "The theory of groups" , Macmillan (1959)
[a2] H. Neumann, "Generalized free products with amalgamated subgroups I" Amer. J. Math. , 70 (1948) pp. 590–625
[a3] H. Neumann, "Generalized free products with amalgamated subgroups II" Amer. J. Math. , 71 (1949) pp. 491–540
How to Cite This Entry:
Amalgam of groups. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Amalgam_of_groups&oldid=45095
This article was adapted from an original article by Yu.I. MerzlyakovN.S. Romanovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article