Namespaces
Variants
Actions

Difference between revisions of "Almost-reducible linear system"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
a0120001.png
 +
$#A+1 = 9 n = 0
 +
$#C+1 = 9 : ~/encyclopedia/old_files/data/A012/A.0102000 Almost\AAhreducible linear system
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''of ordinary differential equations''
 
''of ordinary differential equations''
  
 
A system
 
A system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012000/a0120001.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
\dot{x}  = A (t) x ,\ \
 +
x \in \mathbf R  ^ {n} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012000/a0120002.png" /></td> </tr></table>
+
$$
 +
A ( \cdot ) : \mathbf R  \rightarrow  \mathop{\rm Hom} ( \mathbf R  ^ {n} , \mathbf R  ^ {n} ) ,
 +
$$
  
having the following property: There exist a system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012000/a0120003.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012000/a0120004.png" />, with constant coefficients and, for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012000/a0120005.png" />, a [[Lyapunov transformation|Lyapunov transformation]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012000/a0120006.png" /> such that by the change of variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012000/a0120007.png" />, the system (*) is transformed into the system
+
having the following property: There exist a system $  \dot{y} = B y $,  
 +
$  y \in \mathbf R  ^ {n} $,  
 +
with constant coefficients and, for every $  \epsilon > 0 $,  
 +
a [[Lyapunov transformation|Lyapunov transformation]] $  L _  \epsilon  (t) $
 +
such that by the change of variables $  x = L _  \epsilon  (t) y $,  
 +
the system (*) is transformed into the system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012000/a0120008.png" /></td> </tr></table>
+
$$
 +
\dot{y}  = ( B + C _  \epsilon  (t) ) y ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012000/a0120009.png" /></td> </tr></table>
+
$$
 +
\sup _ {t \in \mathbf R } \
 +
\| C _  \epsilon  (t) \|
 +
< \epsilon .
 +
$$
  
 
Every [[Reducible linear system|reducible linear system]] is almost reducible.
 
Every [[Reducible linear system|reducible linear system]] is almost reducible.

Latest revision as of 16:10, 1 April 2020


of ordinary differential equations

A system

$$ \tag{* } \dot{x} = A (t) x ,\ \ x \in \mathbf R ^ {n} , $$

$$ A ( \cdot ) : \mathbf R \rightarrow \mathop{\rm Hom} ( \mathbf R ^ {n} , \mathbf R ^ {n} ) , $$

having the following property: There exist a system $ \dot{y} = B y $, $ y \in \mathbf R ^ {n} $, with constant coefficients and, for every $ \epsilon > 0 $, a Lyapunov transformation $ L _ \epsilon (t) $ such that by the change of variables $ x = L _ \epsilon (t) y $, the system (*) is transformed into the system

$$ \dot{y} = ( B + C _ \epsilon (t) ) y , $$

where

$$ \sup _ {t \in \mathbf R } \ \| C _ \epsilon (t) \| < \epsilon . $$

Every reducible linear system is almost reducible.

References

[1] N.A. Izobov, "Linear systems of ordinary differential equations" J. Soviet Math. , 5 : 1 (1976) pp. 46–96 Itogi Nauk. i Tekhn. Mat. Anal. , 12 (1974) pp. 71–146
How to Cite This Entry:
Almost-reducible linear system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Almost-reducible_linear_system&oldid=45086
This article was adapted from an original article by V.M. Millionshchikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article