Difference between revisions of "Airy functions"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | a0112101.png | ||
+ | $#A+1 = 114 n = 0 | ||
+ | $#C+1 = 114 : ~/encyclopedia/old_files/data/A011/A.0101210 Airy functions | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
Particular solutions of the [[Airy equation|Airy equation]]. | Particular solutions of the [[Airy equation|Airy equation]]. | ||
The first Airy function (or simply the Airy function) is defined by | The first Airy function (or simply the Airy function) is defined by | ||
− | + | $$ | |
+ | \mathop{\rm Ai} (x) = | ||
+ | \frac{1} \pi | ||
+ | \int\limits _ { 0 } ^ \infty | ||
+ | \cos \left ( | ||
+ | \frac{t ^ {3} }{3} | ||
+ | + x t \right ) \ | ||
+ | d t . | ||
+ | $$ | ||
− | For complex values of | + | For complex values of $ z $ |
− | + | $$ | |
+ | \mathop{\rm Ai} (z) = | ||
+ | \frac{1}{2 \pi } | ||
+ | \int\limits _ \gamma | ||
+ | \mathop{\rm exp} \left ( zt - | ||
+ | \frac{t ^ {3} }{3} | ||
+ | \right ) \ | ||
+ | d t , | ||
+ | $$ | ||
− | where | + | where $ \gamma = ( \infty e ^ {- 2 \pi i / 3 } , 0 ] \cup [ 0 , + \infty ) $ |
+ | is a contour in the complex $ t $- | ||
+ | plane. The second Airy function is defined by | ||
− | + | $$ | |
+ | \mathop{\rm Bi} (z) = i \omega ^ {2} \mathop{\rm Ai} ( \omega ^ {2} z ) - | ||
+ | i \omega \mathop{\rm Ai} ( \omega z ) ,\ \omega = e ^ {2 \pi i / 3 } . | ||
+ | $$ | ||
− | The functions | + | The functions $ \mathop{\rm Ai} (x) $ |
+ | and $ \mathop{\rm Bi} (x) $ | ||
+ | are real for real $ x $. | ||
A second collection of Airy functions was introduced by V.A. Fock [V.A. Fok]: | A second collection of Airy functions was introduced by V.A. Fock [V.A. Fok]: | ||
− | + | $$ | |
+ | v (z) = | ||
+ | \frac{\sqrt \pi }{2} | ||
+ | \mathop{\rm Ai} (z) , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | w _ {1} (z) = 2 e ^ {i \pi / 6 } v ( \omega z ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | w _ {2} (z) = 2 e ^ {- i \pi / 6 } v ( \omega ^ {-1} z ) ; | ||
+ | $$ | ||
− | + | in this case $ v (z) $ | |
+ | is called the Airy–Fok function (Airy–Fock function). The following identities hold: | ||
− | + | $$ \tag{1 } | |
+ | v (z) = | ||
+ | \frac{w _ {1} (z) - w _ {2} (z) }{2i} | ||
+ | ,\ \ | ||
+ | \overline{ {w _ {1} (z) }}\; = w _ {2} ( \overline{z}\; ) . | ||
+ | $$ | ||
− | + | Any two of $ v (z) , w _ {1} (z) $ | |
+ | and $ w _ {2} (z) $ | ||
+ | are linearly independent. | ||
− | + | The most important Airy function is $ v (z) $( | |
+ | or $ \mathop{\rm Ai} (z) $). | ||
+ | Its asymptotic behaviour on the real axis is given by | ||
− | + | $$ | |
+ | v (x) = | ||
+ | \frac{1}{2} | ||
+ | |||
+ | \frac{x ^ {-1/4} }{\sqrt \pi } | ||
+ | \ | ||
+ | \mathop{\rm exp} \left ( - | ||
+ | \frac{2}{3} | ||
+ | x ^ {3/2} \right ) [ 1 + | ||
+ | O ( x ^ {-3/2} ) ] , | ||
+ | \ x \rightarrow + \infty , | ||
+ | $$ | ||
− | + | $$ | |
+ | v (x) = | ||
+ | \frac{| x | ^ {-1/4} }{\sqrt \pi } | ||
+ | \left [ | ||
+ | \sin \left ( | ||
+ | \frac{2}{3} | ||
+ | | x | ^ {3/2} + | ||
+ | \frac \pi {4} | ||
− | + | \right ) + O ( | x | ^ {-3/2} ) \right ] , | |
+ | $$ | ||
− | + | $$ | |
+ | \ x \rightarrow - \infty , | ||
+ | $$ | ||
− | so | + | so $ v (x) $ |
+ | decreases rapidly for $ x > 0 , x \gg 1 $ | ||
+ | and oscillates strongly for $ x < 0 , | x | \gg 1 $. | ||
+ | The functions $ w _ {1} (x) $ | ||
+ | and $ w _ {2} (x) $ | ||
+ | increase exponentially as $ x \rightarrow + \infty $. | ||
+ | For complex $ z $ | ||
+ | the Airy functions have the following asymptotic expansions as $ | z | \rightarrow \infty $: | ||
− | + | $$ \tag{2 } | |
+ | v (z) \sim | ||
+ | \frac{1}{2 \sqrt \pi } | ||
+ | z ^ {-1/4} \mathop{\rm exp} | ||
+ | \left ( - | ||
+ | \frac{2}{3} | ||
+ | z ^ {3/2} \right ) \times | ||
+ | $$ | ||
− | + | $$ | |
+ | \times | ||
+ | \sum _ { n=0 } ^ \infty (-1) ^ {n} a _ {n} z ^ {-3n/2} | ||
+ | \ \textrm{ for } | \mathop{\rm arg} z | \leq \pi - \epsilon , | ||
+ | $$ | ||
− | + | $$ | |
+ | w _ {1} (z) \sim | ||
+ | \frac{1}{\sqrt \pi } | ||
+ | z ^ {-1/4} | ||
+ | \mathop{\rm exp} \left ( | ||
+ | \frac{2}{3} | ||
+ | z ^ {3/2} \right ) \times | ||
+ | $$ | ||
− | + | $$ | |
+ | \times | ||
+ | \sum _ { n=0 } ^ \infty a _ {n} z ^ {-3n/2} \ \textrm{ for } \ | ||
+ | | \mathop{\rm arg} z - | ||
+ | \frac \pi {3} | ||
+ | | \leq \pi - \epsilon , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | a _ {n} = \ | ||
+ | |||
+ | \frac{\Gamma \left ( 3 n + | ||
+ | \frac{1}{2} | ||
+ | \right ) 9 ^ {-n} }{( 2 n ) ! } | ||
+ | . | ||
+ | $$ | ||
− | The asymptotic expansion of | + | The asymptotic expansion of $ w _ {2} (z) $ |
+ | is of the form (2), but it is valid in the sector | ||
− | + | $$ | |
+ | \left | \mathop{\rm arg} \left ( z + | ||
+ | \frac \pi {3} | ||
+ | \right ) \ | ||
+ | \right | \leq \pi - \epsilon . | ||
+ | $$ | ||
− | Here | + | Here $ \epsilon \in ( 0 , \pi ) $ |
+ | is arbitrary, the branches of $ \sqrt z $ | ||
+ | and $ z ^ {1/4} $ | ||
+ | are positive on the semi-axis $ ( 0 , \infty ) $, | ||
+ | and the asymptotic expansions are uniform with respect to $ \mathop{\rm arg} z $ | ||
+ | and can be differentiated term by term any number of times. In the remaining sector $ | \mathop{\rm arg} -z | < \epsilon $ | ||
+ | the asymptotic expansion of $ v (z) $ | ||
+ | is expressed in terms of those of $ w _ {1} (z) $ | ||
+ | and $ w _ {2} (z) $ | ||
+ | by means of (1); hence, the asymptotic expansion of $ v (z) $ | ||
+ | has a different form in different sectors of the complex $ z $- | ||
+ | plane. This fact was first established by G.G. Stokes [[#References|[2]]] and is called the Stokes phenomenon. | ||
The Airy functions occur in the study of integrals of rapidly-oscillating functions, of the form | The Airy functions occur in the study of integrals of rapidly-oscillating functions, of the form | ||
− | + | $$ | |
+ | I ( \lambda , \alpha ) = \int\limits _ { a } ^ { b } | ||
+ | \textrm{ e } ^ {i \lambda S ( x , \alpha ) } | ||
+ | f ( x , \alpha ) d x , | ||
+ | $$ | ||
− | for | + | for $ \lambda > 0 , \lambda \rightarrow \infty $. |
+ | Here $ f $ | ||
+ | and $ S $ | ||
+ | are smooth functions, $ S $ | ||
+ | is real and $ \alpha $ | ||
+ | is a real parameter. If for small values of $ \alpha \geq 0 $ | ||
+ | the phase $ S $ | ||
+ | has two close non-degenerate stationary points $ x _ {1} ( \alpha ) $ | ||
+ | and $ x _ {2} ( \alpha ) $ | ||
+ | that coincide for $ \alpha = 0 $, | ||
+ | for example, if | ||
− | + | $$ | |
+ | S ( x , \alpha ) = \alpha x - x ^ {3} + O | ||
+ | ( x ^ {4} ) \ \textrm{ as } x \rightarrow 0 , | ||
+ | $$ | ||
− | then for small values of | + | then for small values of $ \alpha \geq 0 $, |
+ | as $ \lambda \rightarrow + \infty $, | ||
+ | the contribution to the asymptotics of the integral coming from a neighbourhood of the point $ x = 0 $ | ||
+ | can be expressed in terms of the Airy function $ v $ | ||
+ | and its derivative (see [[#References|[6]]]). Integrals of this kind occur in the study of short-wave fields near a simple focus (see [[#References|[7]]] and [[#References|[8]]]); the Airy functions arose in connection with the study of this problem [[#References|[1]]]. | ||
Consider the second-order differential equation | Consider the second-order differential equation | ||
− | + | $$ \tag{3 } | |
+ | y ^ {\prime\prime} + \lambda ^ {2} q (x) y = 0 , | ||
+ | $$ | ||
− | where | + | where $ q (x) $ |
+ | is a smooth real-valued function on the interval $ I = [ a , b ] $ | ||
+ | and $ \lambda > 0 $ | ||
+ | is a large parameter. The zeros of $ q (x) $ | ||
+ | are called turning points (or transfer points) of the equation (3). Let | ||
− | < | + | $$ |
+ | a < x _ {0} < b ,\ \ | ||
+ | q ( x _ {0} ) = 0 ,\ \ | ||
+ | q ^ \prime ( x _ {0} ) \neq 0 | ||
+ | $$ | ||
(such a point is called simple), | (such a point is called simple), | ||
− | + | $$ | |
+ | q (x) \neq 0 \ \textrm{ for } \ | ||
+ | x \in I , x \neq x _ {0} ,\ \ | ||
+ | q ^ \prime ( x _ {0} ) > 0 . | ||
+ | $$ | ||
Set | Set | ||
− | + | $$ | |
+ | \xi (x) = \left ( | ||
+ | \frac{2}{3} | ||
+ | \int\limits _ {x _ {0} } ^ { x } | ||
+ | \sqrt {q (t) } d t \right ) ^ {2/3} ,\ \ | ||
+ | \mathop{\rm sign} \xi (x) = \mathop{\rm sign} ( x - x _ {0} ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | Y _ {0} (x) = ( \xi ^ \prime (x) ) ^ {-1/2} \mathop{\rm Ai} ( - \lambda ^ {2/3} \xi (x) ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | Y _ {1} (x) = ( \xi ^ \prime (x) ) ^ {-1/2} \mathop{\rm Bi} ( - \lambda ^ {2/3} \xi (x) ) . | ||
+ | $$ | ||
− | Equation (3) has linearly independent solutions | + | Equation (3) has linearly independent solutions $ y _ {0} (x) $ |
+ | and $ y _ {1} (x) $ | ||
+ | such that, as $ \lambda \rightarrow + \infty $, | ||
− | + | $$ | |
+ | y _ {j} (x) = Y _ {j} (x) \left [ 1 + O \left ( | ||
+ | \frac{1} \lambda | ||
+ | \right ) \right ] ,\ \ | ||
+ | a \leq x \leq x _ {0} ,\ j = 0 , 1 , | ||
+ | $$ | ||
− | + | $$ | |
+ | y _ {0} (x) = Y _ {0} (x) \left [ 1 + O \left ( | ||
+ | \frac{1} \lambda | ||
− | + | \right ) \right ] + Y _ {1} (x) O \left ( | |
+ | \frac{1} \lambda | ||
+ | \right ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | y _ {1} (x) = Y _ {1} (x) \left [ 1 + O \left ( | ||
+ | \frac{1} \lambda | ||
− | + | \right ) \right ] + Y _ {0} (x) O \left ( | |
+ | \frac{1} \lambda | ||
+ | \right ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | x _ {0} \leq x \leq b , | ||
+ | $$ | ||
− | + | uniformly with respect to $ x $. | |
− | + | This result has been generalized in various directions: asymptotic series have been obtained for the solutions, the case $ q = q ( x , \lambda ) $ | |
+ | has been studied (for example, if $ q ( x , \lambda ) $ | ||
+ | can be expanded in an asymptotic series $ q \sim \sum _ {n=0} ^ \infty \lambda ^ {-n} q _ {n} (x) $ | ||
+ | as $ \lambda \rightarrow + \infty $), | ||
+ | and the asymptotic behaviour of the solutions near multiple turning points has been investigated. Other generalizations concern the equation | ||
− | + | $$ \tag{4 } | |
+ | w ^ {\prime\prime} + \lambda ^ {2} q (x) w = 0 , | ||
+ | $$ | ||
− | + | where the function $ q (z) $ | |
+ | is analytic in a domain $ D $ | ||
+ | of the complex $ z $- | ||
+ | plane. Let $ l $ | ||
+ | be the maximal connected component of the level line | ||
− | + | $$ | |
+ | \mathop{\rm Re} \int\limits _ {z _ {0} } ^ { z } \sqrt {q (t) } \ | ||
+ | d t = 0 , | ||
+ | $$ | ||
− | + | emanating from a turning point $ z _ {0} $ | |
+ | and containing no other turning points; then $ l $ | ||
+ | is called a Stokes line. If $ q = - z $( | ||
+ | that is, (4) is the Airy equation), then the Stokes lines are the rays $ ( - \infty , 0 ) $ | ||
+ | and $ ( 0 , e ^ {\pm i \pi / 3 } ) $. | ||
+ | Analogously, if $ z _ {0} $ | ||
+ | is a simple turning point of (4), then there are three Stokes lines $ l _ {1} , l _ {2} $ | ||
+ | and $ l _ {3} $ | ||
+ | emanating from it and the angle between adjacent lines at $ z _ {0} $ | ||
+ | is equal to $ 2 \pi / 3 $. | ||
+ | Let $ S _ {j} $ | ||
+ | be a neighbourhood of $ z _ {0} $ | ||
+ | from which a neighbourhood of the Stokes line $ l _ {j} $, | ||
+ | $ j = 1 , 2 , 3 $, | ||
+ | has been removed. For a suitable numbering of the $ S _ {j} $, | ||
+ | equation (4) has three solutions $ \widetilde{w} _ {j} (z) $, | ||
+ | $ j = 1 , 2 , 3 $, | ||
+ | such that, as $ \lambda \rightarrow + \infty $, | ||
+ | |||
+ | $$ | ||
+ | \widetilde{w} _ {j} (z) \sim | ||
+ | \frac{1}{\sqrt {\xi (z) } } | ||
+ | v ( - \lambda | ||
+ | ^ {2/3} \omega ^ {j} \xi (z) ) ,\ \ | ||
+ | \omega = e ^ {2 \pi i / 3 } , | ||
+ | $$ | ||
+ | |||
+ | for $ z \in S _ {j} $. | ||
The Airy functions also occur in the study of asymptotic solutions of ordinary differential equations and systems of higher order near simple turning points. | The Airy functions also occur in the study of asymptotic solutions of ordinary differential equations and systems of higher order near simple turning points. | ||
Line 118: | Line 353: | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.B. Airy, ''Trans. Cambridge Philos. Soc.'' , '''6''' (1838) pp. 379–402</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.G. Stokes, ''Trans. Cambridge Philos. Soc.'' , '''10''' (1857) pp. 105–128</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.A. Fok, "Tables of the Airy functions" , Moscow (1946) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Segun, M. Abramowitz, "Handbook of mathematical functions" , ''Appl. Math. Ser.'' , '''55''' , Nat. Bur. Standards (1970)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.M. Babich, V.S. Buldyrev, "Asymptotic methods in the diffraction of short waves" , Moscow (1972) (In Russian) (Translation forthcoming: Springer)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> M.V. Fedoryuk, "The saddle-point method" , Moscow (1977) (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> E.M. Lifshits, "The classical theory of fields" , Addison-Wesley (1951) (Translated from Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> V.P. Maslov, M.V. Fedoryuk, "Quasi-classical approximation for the equations of quantum mechanics" , Reidel (1981) (Translated from Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> A.A. Dorodnitsyn, "Asymptotic laws of distribution of the characteristic values for certain types of second-order differential equations" ''Uspekhi Mat. Nauk'' , '''6''' : 7 (1952) pp. 3–96 (In Russian)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> W. Wasov, "Asymptotic expansions for ordinary differential equations" , Interscience (1965)</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> M.V. Fedoryuk, "Asymptotic methods for linear ordinary differential equations" , Moscow (1983) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.B. Airy, ''Trans. Cambridge Philos. Soc.'' , '''6''' (1838) pp. 379–402</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.G. Stokes, ''Trans. Cambridge Philos. Soc.'' , '''10''' (1857) pp. 105–128</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.A. Fok, "Tables of the Airy functions" , Moscow (1946) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Segun, M. Abramowitz, "Handbook of mathematical functions" , ''Appl. Math. Ser.'' , '''55''' , Nat. Bur. Standards (1970)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.M. Babich, V.S. Buldyrev, "Asymptotic methods in the diffraction of short waves" , Moscow (1972) (In Russian) (Translation forthcoming: Springer)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> M.V. Fedoryuk, "The saddle-point method" , Moscow (1977) (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> E.M. Lifshits, "The classical theory of fields" , Addison-Wesley (1951) (Translated from Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> V.P. Maslov, M.V. Fedoryuk, "Quasi-classical approximation for the equations of quantum mechanics" , Reidel (1981) (Translated from Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> A.A. Dorodnitsyn, "Asymptotic laws of distribution of the characteristic values for certain types of second-order differential equations" ''Uspekhi Mat. Nauk'' , '''6''' : 7 (1952) pp. 3–96 (In Russian)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> W. Wasov, "Asymptotic expansions for ordinary differential equations" , Interscience (1965)</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> M.V. Fedoryuk, "Asymptotic methods for linear ordinary differential equations" , Moscow (1983) (In Russian)</TD></TR></table> | ||
+ | ====Comments==== | ||
+ | The Airy function can be expressed in terms of modified [[Bessel functions|Bessel functions]] of the third kind: | ||
+ | $$ | ||
+ | \mathop{\rm Ai} (x) = \ | ||
− | + | \frac{1}{\pi \sqrt 3 } | |
− | + | ||
+ | \sqrt x K _ {1/3} \left ( | ||
− | + | \frac{2}{3} | |
+ | x ^ {2/3} | ||
+ | \right ) . | ||
+ | $$ | ||
− | The function | + | The function $ \mathop{\rm Ai} (z) $ |
+ | satisfies the differential equation $ w ^ {\prime\prime} (z) = z w (z) $, | ||
+ | cf. [[#References|[a2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N.N. Lebedev, "Special functions and their applications" , Dover, reprint (1972) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N.N. Lebedev, "Special functions and their applications" , Dover, reprint (1972) (Translated from Russian)</TD></TR></table> |
Revision as of 16:09, 1 April 2020
Particular solutions of the Airy equation.
The first Airy function (or simply the Airy function) is defined by
$$ \mathop{\rm Ai} (x) = \frac{1} \pi \int\limits _ { 0 } ^ \infty \cos \left ( \frac{t ^ {3} }{3} + x t \right ) \ d t . $$
For complex values of $ z $
$$ \mathop{\rm Ai} (z) = \frac{1}{2 \pi } \int\limits _ \gamma \mathop{\rm exp} \left ( zt - \frac{t ^ {3} }{3} \right ) \ d t , $$
where $ \gamma = ( \infty e ^ {- 2 \pi i / 3 } , 0 ] \cup [ 0 , + \infty ) $ is a contour in the complex $ t $- plane. The second Airy function is defined by
$$ \mathop{\rm Bi} (z) = i \omega ^ {2} \mathop{\rm Ai} ( \omega ^ {2} z ) - i \omega \mathop{\rm Ai} ( \omega z ) ,\ \omega = e ^ {2 \pi i / 3 } . $$
The functions $ \mathop{\rm Ai} (x) $ and $ \mathop{\rm Bi} (x) $ are real for real $ x $.
A second collection of Airy functions was introduced by V.A. Fock [V.A. Fok]:
$$ v (z) = \frac{\sqrt \pi }{2} \mathop{\rm Ai} (z) , $$
$$ w _ {1} (z) = 2 e ^ {i \pi / 6 } v ( \omega z ) , $$
$$ w _ {2} (z) = 2 e ^ {- i \pi / 6 } v ( \omega ^ {-1} z ) ; $$
in this case $ v (z) $ is called the Airy–Fok function (Airy–Fock function). The following identities hold:
$$ \tag{1 } v (z) = \frac{w _ {1} (z) - w _ {2} (z) }{2i} ,\ \ \overline{ {w _ {1} (z) }}\; = w _ {2} ( \overline{z}\; ) . $$
Any two of $ v (z) , w _ {1} (z) $ and $ w _ {2} (z) $ are linearly independent.
The most important Airy function is $ v (z) $( or $ \mathop{\rm Ai} (z) $). Its asymptotic behaviour on the real axis is given by
$$ v (x) = \frac{1}{2} \frac{x ^ {-1/4} }{\sqrt \pi } \ \mathop{\rm exp} \left ( - \frac{2}{3} x ^ {3/2} \right ) [ 1 + O ( x ^ {-3/2} ) ] , \ x \rightarrow + \infty , $$
$$ v (x) = \frac{| x | ^ {-1/4} }{\sqrt \pi } \left [ \sin \left ( \frac{2}{3} | x | ^ {3/2} + \frac \pi {4} \right ) + O ( | x | ^ {-3/2} ) \right ] , $$
$$ \ x \rightarrow - \infty , $$
so $ v (x) $ decreases rapidly for $ x > 0 , x \gg 1 $ and oscillates strongly for $ x < 0 , | x | \gg 1 $. The functions $ w _ {1} (x) $ and $ w _ {2} (x) $ increase exponentially as $ x \rightarrow + \infty $. For complex $ z $ the Airy functions have the following asymptotic expansions as $ | z | \rightarrow \infty $:
$$ \tag{2 } v (z) \sim \frac{1}{2 \sqrt \pi } z ^ {-1/4} \mathop{\rm exp} \left ( - \frac{2}{3} z ^ {3/2} \right ) \times $$
$$ \times \sum _ { n=0 } ^ \infty (-1) ^ {n} a _ {n} z ^ {-3n/2} \ \textrm{ for } | \mathop{\rm arg} z | \leq \pi - \epsilon , $$
$$ w _ {1} (z) \sim \frac{1}{\sqrt \pi } z ^ {-1/4} \mathop{\rm exp} \left ( \frac{2}{3} z ^ {3/2} \right ) \times $$
$$ \times \sum _ { n=0 } ^ \infty a _ {n} z ^ {-3n/2} \ \textrm{ for } \ | \mathop{\rm arg} z - \frac \pi {3} | \leq \pi - \epsilon , $$
where
$$ a _ {n} = \ \frac{\Gamma \left ( 3 n + \frac{1}{2} \right ) 9 ^ {-n} }{( 2 n ) ! } . $$
The asymptotic expansion of $ w _ {2} (z) $ is of the form (2), but it is valid in the sector
$$ \left | \mathop{\rm arg} \left ( z + \frac \pi {3} \right ) \ \right | \leq \pi - \epsilon . $$
Here $ \epsilon \in ( 0 , \pi ) $ is arbitrary, the branches of $ \sqrt z $ and $ z ^ {1/4} $ are positive on the semi-axis $ ( 0 , \infty ) $, and the asymptotic expansions are uniform with respect to $ \mathop{\rm arg} z $ and can be differentiated term by term any number of times. In the remaining sector $ | \mathop{\rm arg} -z | < \epsilon $ the asymptotic expansion of $ v (z) $ is expressed in terms of those of $ w _ {1} (z) $ and $ w _ {2} (z) $ by means of (1); hence, the asymptotic expansion of $ v (z) $ has a different form in different sectors of the complex $ z $- plane. This fact was first established by G.G. Stokes [2] and is called the Stokes phenomenon.
The Airy functions occur in the study of integrals of rapidly-oscillating functions, of the form
$$ I ( \lambda , \alpha ) = \int\limits _ { a } ^ { b } \textrm{ e } ^ {i \lambda S ( x , \alpha ) } f ( x , \alpha ) d x , $$
for $ \lambda > 0 , \lambda \rightarrow \infty $. Here $ f $ and $ S $ are smooth functions, $ S $ is real and $ \alpha $ is a real parameter. If for small values of $ \alpha \geq 0 $ the phase $ S $ has two close non-degenerate stationary points $ x _ {1} ( \alpha ) $ and $ x _ {2} ( \alpha ) $ that coincide for $ \alpha = 0 $, for example, if
$$ S ( x , \alpha ) = \alpha x - x ^ {3} + O ( x ^ {4} ) \ \textrm{ as } x \rightarrow 0 , $$
then for small values of $ \alpha \geq 0 $, as $ \lambda \rightarrow + \infty $, the contribution to the asymptotics of the integral coming from a neighbourhood of the point $ x = 0 $ can be expressed in terms of the Airy function $ v $ and its derivative (see [6]). Integrals of this kind occur in the study of short-wave fields near a simple focus (see [7] and [8]); the Airy functions arose in connection with the study of this problem [1].
Consider the second-order differential equation
$$ \tag{3 } y ^ {\prime\prime} + \lambda ^ {2} q (x) y = 0 , $$
where $ q (x) $ is a smooth real-valued function on the interval $ I = [ a , b ] $ and $ \lambda > 0 $ is a large parameter. The zeros of $ q (x) $ are called turning points (or transfer points) of the equation (3). Let
$$ a < x _ {0} < b ,\ \ q ( x _ {0} ) = 0 ,\ \ q ^ \prime ( x _ {0} ) \neq 0 $$
(such a point is called simple),
$$ q (x) \neq 0 \ \textrm{ for } \ x \in I , x \neq x _ {0} ,\ \ q ^ \prime ( x _ {0} ) > 0 . $$
Set
$$ \xi (x) = \left ( \frac{2}{3} \int\limits _ {x _ {0} } ^ { x } \sqrt {q (t) } d t \right ) ^ {2/3} ,\ \ \mathop{\rm sign} \xi (x) = \mathop{\rm sign} ( x - x _ {0} ) , $$
$$ Y _ {0} (x) = ( \xi ^ \prime (x) ) ^ {-1/2} \mathop{\rm Ai} ( - \lambda ^ {2/3} \xi (x) ) , $$
$$ Y _ {1} (x) = ( \xi ^ \prime (x) ) ^ {-1/2} \mathop{\rm Bi} ( - \lambda ^ {2/3} \xi (x) ) . $$
Equation (3) has linearly independent solutions $ y _ {0} (x) $ and $ y _ {1} (x) $ such that, as $ \lambda \rightarrow + \infty $,
$$ y _ {j} (x) = Y _ {j} (x) \left [ 1 + O \left ( \frac{1} \lambda \right ) \right ] ,\ \ a \leq x \leq x _ {0} ,\ j = 0 , 1 , $$
$$ y _ {0} (x) = Y _ {0} (x) \left [ 1 + O \left ( \frac{1} \lambda \right ) \right ] + Y _ {1} (x) O \left ( \frac{1} \lambda \right ) , $$
$$ y _ {1} (x) = Y _ {1} (x) \left [ 1 + O \left ( \frac{1} \lambda \right ) \right ] + Y _ {0} (x) O \left ( \frac{1} \lambda \right ) , $$
$$ x _ {0} \leq x \leq b , $$
uniformly with respect to $ x $.
This result has been generalized in various directions: asymptotic series have been obtained for the solutions, the case $ q = q ( x , \lambda ) $ has been studied (for example, if $ q ( x , \lambda ) $ can be expanded in an asymptotic series $ q \sim \sum _ {n=0} ^ \infty \lambda ^ {-n} q _ {n} (x) $ as $ \lambda \rightarrow + \infty $), and the asymptotic behaviour of the solutions near multiple turning points has been investigated. Other generalizations concern the equation
$$ \tag{4 } w ^ {\prime\prime} + \lambda ^ {2} q (x) w = 0 , $$
where the function $ q (z) $ is analytic in a domain $ D $ of the complex $ z $- plane. Let $ l $ be the maximal connected component of the level line
$$ \mathop{\rm Re} \int\limits _ {z _ {0} } ^ { z } \sqrt {q (t) } \ d t = 0 , $$
emanating from a turning point $ z _ {0} $ and containing no other turning points; then $ l $ is called a Stokes line. If $ q = - z $( that is, (4) is the Airy equation), then the Stokes lines are the rays $ ( - \infty , 0 ) $ and $ ( 0 , e ^ {\pm i \pi / 3 } ) $. Analogously, if $ z _ {0} $ is a simple turning point of (4), then there are three Stokes lines $ l _ {1} , l _ {2} $ and $ l _ {3} $ emanating from it and the angle between adjacent lines at $ z _ {0} $ is equal to $ 2 \pi / 3 $. Let $ S _ {j} $ be a neighbourhood of $ z _ {0} $ from which a neighbourhood of the Stokes line $ l _ {j} $, $ j = 1 , 2 , 3 $, has been removed. For a suitable numbering of the $ S _ {j} $, equation (4) has three solutions $ \widetilde{w} _ {j} (z) $, $ j = 1 , 2 , 3 $, such that, as $ \lambda \rightarrow + \infty $,
$$ \widetilde{w} _ {j} (z) \sim \frac{1}{\sqrt {\xi (z) } } v ( - \lambda ^ {2/3} \omega ^ {j} \xi (z) ) ,\ \ \omega = e ^ {2 \pi i / 3 } , $$
for $ z \in S _ {j} $.
The Airy functions also occur in the study of asymptotic solutions of ordinary differential equations and systems of higher order near simple turning points.
References
[1] | G.B. Airy, Trans. Cambridge Philos. Soc. , 6 (1838) pp. 379–402 |
[2] | G.G. Stokes, Trans. Cambridge Philos. Soc. , 10 (1857) pp. 105–128 |
[3] | V.A. Fok, "Tables of the Airy functions" , Moscow (1946) (In Russian) |
[4] | A. Segun, M. Abramowitz, "Handbook of mathematical functions" , Appl. Math. Ser. , 55 , Nat. Bur. Standards (1970) |
[5] | V.M. Babich, V.S. Buldyrev, "Asymptotic methods in the diffraction of short waves" , Moscow (1972) (In Russian) (Translation forthcoming: Springer) |
[6] | M.V. Fedoryuk, "The saddle-point method" , Moscow (1977) (In Russian) |
[7] | E.M. Lifshits, "The classical theory of fields" , Addison-Wesley (1951) (Translated from Russian) |
[8] | V.P. Maslov, M.V. Fedoryuk, "Quasi-classical approximation for the equations of quantum mechanics" , Reidel (1981) (Translated from Russian) |
[9] | A.A. Dorodnitsyn, "Asymptotic laws of distribution of the characteristic values for certain types of second-order differential equations" Uspekhi Mat. Nauk , 6 : 7 (1952) pp. 3–96 (In Russian) |
[10] | W. Wasov, "Asymptotic expansions for ordinary differential equations" , Interscience (1965) |
[11] | M.V. Fedoryuk, "Asymptotic methods for linear ordinary differential equations" , Moscow (1983) (In Russian) |
Comments
The Airy function can be expressed in terms of modified Bessel functions of the third kind:
$$ \mathop{\rm Ai} (x) = \ \frac{1}{\pi \sqrt 3 } \sqrt x K _ {1/3} \left ( \frac{2}{3} x ^ {2/3} \right ) . $$
The function $ \mathop{\rm Ai} (z) $ satisfies the differential equation $ w ^ {\prime\prime} (z) = z w (z) $, cf. [a2].
References
[a1] | F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974) |
[a2] | N.N. Lebedev, "Special functions and their applications" , Dover, reprint (1972) (Translated from Russian) |
Airy functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Airy_functions&oldid=45054