|
|
Line 1: |
Line 1: |
− | ''affine algebraic variety''
| + | <!-- |
| + | a0111601.png |
| + | $#A+1 = 41 n = 0 |
| + | $#C+1 = 41 : ~/encyclopedia/old_files/data/A011/A.0101160 Affine variety, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A generalization of the concept of an [[Affine algebraic set|affine algebraic set]]. An affine variety is a reduced [[Affine scheme|affine scheme]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a0111601.png" /> of finite type over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a0111602.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a0111603.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a0111604.png" /> is a commutative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a0111605.png" />-algebra of finite type without nilpotent elements. The affine variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a0111606.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a0111607.png" /> is the ring of polynomials over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a0111608.png" />, is called affine space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a0111609.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116010.png" />. An affine scheme is an affine variety if and only if it is isomorphic to a reduced closed subscheme of an affine space. Each system of generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116011.png" /> of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116012.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116013.png" /> defines a surjective homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116014.png" />, defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116015.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116016.png" /> be the algebraic closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116017.png" />. The subset of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116018.png" /> consisting of the common zeros of all the polynomials of the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116019.png" /> is an affine algebraic set over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116020.png" />. The coordinate ring of such an affine algebraic set is isomorphic to the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116021.png" />. Each affine algebraic set over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116022.png" /> in turn defines an algebraic variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116023.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116024.png" /> is the coordinate ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116025.png" />. The set of points of an affine variety is in a one-to-one correspondence with the irreducible subvarieties of the corresponding affine algebraic set.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | To each affine variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116026.png" /> a functor on the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116027.png" />-algebras is assigned. It is defined by the correspondence:
| + | ''affine algebraic variety'' |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116028.png" /></td> </tr></table>
| + | A generalization of the concept of an [[Affine algebraic set|affine algebraic set]]. An affine variety is a reduced [[Affine scheme|affine scheme]] $ X $ |
| + | of finite type over a field $ k $, |
| + | i.e. $ X = { \mathop{\rm Spec} } A $, |
| + | where $ A $ |
| + | is a commutative $ k $- |
| + | algebra of finite type without nilpotent elements. The affine variety $ X = { \mathop{\rm Spec} } k[ T _ {1} \dots T _ {n} ] $, |
| + | where $ k[T _ {1} \dots T _ {n} ] $ |
| + | is the ring of polynomials over $ k $, |
| + | is called affine space over $ k $ |
| + | and is denoted by $ \mathbf A _ {k} ^ {n} $. |
| + | An affine scheme is an affine variety if and only if it is isomorphic to a reduced closed subscheme of an affine space. Each system of generators $ x _ {1} \dots x _ {n} $ |
| + | of a $ k $- |
| + | algebra $ A $ |
| + | defines a surjective homomorphism $ \phi : k[ T _ {1} \dots T _ {n} ] \rightarrow A $, |
| + | defined by the formula $ \phi ( T _ {i} ) = x _ {i} $. |
| + | Let $ \overline{k}\; $ |
| + | be the algebraic closure of $ k $. |
| + | The subset of the set $ \overline{k}\; ^ {n} $ |
| + | consisting of the common zeros of all the polynomials of the ideal $ { \mathop{\rm ker} } \phi $ |
| + | is an affine algebraic set over $ k $. |
| + | The coordinate ring of such an affine algebraic set is isomorphic to the ring $ A $. |
| + | Each affine algebraic set over $ k $ |
| + | in turn defines an algebraic variety $ { \mathop{\rm Spec} } k[X] $, |
| + | where $ k[X] $ |
| + | is the coordinate ring of $ X $. |
| + | The set of points of an affine variety is in a one-to-one correspondence with the irreducible subvarieties of the corresponding affine algebraic set. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116029.png" /> (respectively, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116030.png" />), the elements of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116031.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116032.png" />) are called geometric (respectively, rational) points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116033.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116034.png" /> is in a bijective correspondence with the set of maximal ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116035.png" /> of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116036.png" />, and with the set of points of an algebraic set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116037.png" /> whose coordinate ring is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116038.png" />. The spectral topology in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116039.png" /> induces on the everywhere-dense subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116040.png" /> a topology which corresponds to the Zariski topology on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116041.png" />.
| + | To each affine variety $ X = { \mathop{\rm Spec} } A $ |
| + | a functor on the category of $ k $- |
| + | algebras is assigned. It is defined by the correspondence: |
| | | |
| + | $$ |
| + | B \rightarrow X (B) = { \mathop{\rm Hom} } _ {k- \mathop{\rm alg} } ( A , B ). |
| + | $$ |
| | | |
| + | If $ B = \overline{k}\; $( |
| + | respectively, if $ B = k $), |
| + | the elements of the set $ X ( \overline{k}\; ) $( |
| + | respectively, $ X(k) $) |
| + | are called geometric (respectively, rational) points of $ X $. |
| + | The set $ X( \overline{k}\; ) $ |
| + | is in a bijective correspondence with the set of maximal ideals $ { \mathop{\rm Specm} } (A) $ |
| + | of the ring $ A $, |
| + | and with the set of points of an algebraic set $ V $ |
| + | whose coordinate ring is isomorphic to $ A $. |
| + | The spectral topology in the space $ X $ |
| + | induces on the everywhere-dense subset $ { \mathop{\rm Specm} } (A) $ |
| + | a topology which corresponds to the Zariski topology on $ V $. |
| | | |
| ====Comments==== | | ====Comments==== |
affine algebraic variety
A generalization of the concept of an affine algebraic set. An affine variety is a reduced affine scheme $ X $
of finite type over a field $ k $,
i.e. $ X = { \mathop{\rm Spec} } A $,
where $ A $
is a commutative $ k $-
algebra of finite type without nilpotent elements. The affine variety $ X = { \mathop{\rm Spec} } k[ T _ {1} \dots T _ {n} ] $,
where $ k[T _ {1} \dots T _ {n} ] $
is the ring of polynomials over $ k $,
is called affine space over $ k $
and is denoted by $ \mathbf A _ {k} ^ {n} $.
An affine scheme is an affine variety if and only if it is isomorphic to a reduced closed subscheme of an affine space. Each system of generators $ x _ {1} \dots x _ {n} $
of a $ k $-
algebra $ A $
defines a surjective homomorphism $ \phi : k[ T _ {1} \dots T _ {n} ] \rightarrow A $,
defined by the formula $ \phi ( T _ {i} ) = x _ {i} $.
Let $ \overline{k}\; $
be the algebraic closure of $ k $.
The subset of the set $ \overline{k}\; ^ {n} $
consisting of the common zeros of all the polynomials of the ideal $ { \mathop{\rm ker} } \phi $
is an affine algebraic set over $ k $.
The coordinate ring of such an affine algebraic set is isomorphic to the ring $ A $.
Each affine algebraic set over $ k $
in turn defines an algebraic variety $ { \mathop{\rm Spec} } k[X] $,
where $ k[X] $
is the coordinate ring of $ X $.
The set of points of an affine variety is in a one-to-one correspondence with the irreducible subvarieties of the corresponding affine algebraic set.
To each affine variety $ X = { \mathop{\rm Spec} } A $
a functor on the category of $ k $-
algebras is assigned. It is defined by the correspondence:
$$
B \rightarrow X (B) = { \mathop{\rm Hom} } _ {k- \mathop{\rm alg} } ( A , B ).
$$
If $ B = \overline{k}\; $(
respectively, if $ B = k $),
the elements of the set $ X ( \overline{k}\; ) $(
respectively, $ X(k) $)
are called geometric (respectively, rational) points of $ X $.
The set $ X( \overline{k}\; ) $
is in a bijective correspondence with the set of maximal ideals $ { \mathop{\rm Specm} } (A) $
of the ring $ A $,
and with the set of points of an algebraic set $ V $
whose coordinate ring is isomorphic to $ A $.
The spectral topology in the space $ X $
induces on the everywhere-dense subset $ { \mathop{\rm Specm} } (A) $
a topology which corresponds to the Zariski topology on $ V $.
Frequently the name "varietyvariety" means a reduced and irreducible scheme of finite type over an algebraically closed field.
References
[a1] | I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001 |