|
|
Line 1: |
Line 1: |
− | The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110801.png" />, equal to the modulus of the vector product of the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110802.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110803.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110804.png" /> is an arbitrary point in an [[Equi-affine plane|equi-affine plane]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110805.png" /> is a point on a plane curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110806.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110807.png" /> is the affine parameter of the curve and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110808.png" /> is the tangent vector at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110809.png" />. This number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108010.png" /> is called the affine pseudo-distance from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108011.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108012.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108013.png" /> is held fixed, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108014.png" /> is moved along the curve, the affine pseudo-distance from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108015.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108016.png" /> will assume a stationary value if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108017.png" /> lies on the affine normal of the curve at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108018.png" />. An affine pseudo-distance in an equi-affine space can be defined in a similar manner for a given hypersurface.
| + | <!-- |
| + | a0110801.png |
| + | $#A+1 = 18 n = 0 |
| + | $#C+1 = 18 : ~/encyclopedia/old_files/data/A011/A.0101080 Affine pseudo\AAhdistance |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| + | The number $ \rho = ( \overline{ {MM ^ {*} }}\; , \mathbf t ) $, |
| + | equal to the modulus of the vector product of the vectors $ \overline{ {MM ^ {*} }}\; $ |
| + | and $ \mathbf t $, |
| + | where $ M ^ {*} $ |
| + | is an arbitrary point in an [[Equi-affine plane|equi-affine plane]], $ M $ |
| + | is a point on a plane curve $ \mathbf r = \mathbf r (s) $, |
| + | $ s $ |
| + | is the affine parameter of the curve and $ \mathbf t = d \mathbf r / ds $ |
| + | is the tangent vector at the point $ M $. |
| + | This number $ \rho $ |
| + | is called the affine pseudo-distance from $ M ^ {*} $ |
| + | to $ M $. |
| + | If $ M ^ {*} $ |
| + | is held fixed, while $ M $ |
| + | is moved along the curve, the affine pseudo-distance from $ M ^ {*} $ |
| + | to $ M $ |
| + | will assume a stationary value if and only if $ M ^ {*} $ |
| + | lies on the affine normal of the curve at $ M $. |
| + | An affine pseudo-distance in an equi-affine space can be defined in a similar manner for a given hypersurface. |
Latest revision as of 16:09, 1 April 2020
The number $ \rho = ( \overline{ {MM ^ {*} }}\; , \mathbf t ) $,
equal to the modulus of the vector product of the vectors $ \overline{ {MM ^ {*} }}\; $
and $ \mathbf t $,
where $ M ^ {*} $
is an arbitrary point in an equi-affine plane, $ M $
is a point on a plane curve $ \mathbf r = \mathbf r (s) $,
$ s $
is the affine parameter of the curve and $ \mathbf t = d \mathbf r / ds $
is the tangent vector at the point $ M $.
This number $ \rho $
is called the affine pseudo-distance from $ M ^ {*} $
to $ M $.
If $ M ^ {*} $
is held fixed, while $ M $
is moved along the curve, the affine pseudo-distance from $ M ^ {*} $
to $ M $
will assume a stationary value if and only if $ M ^ {*} $
lies on the affine normal of the curve at $ M $.
An affine pseudo-distance in an equi-affine space can be defined in a similar manner for a given hypersurface.
How to Cite This Entry:
Affine pseudo-distance. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Affine_pseudo-distance&oldid=45048
This article was adapted from an original article by A.P. Shirokov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article