Difference between revisions of "Adjoint connections"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | a0108001.png | ||
+ | $#A+1 = 32 n = 0 | ||
+ | $#C+1 = 32 : ~/encyclopedia/old_files/data/A010/A.0100800 Adjoint connections | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Linear connections $ \Gamma $ | |
+ | and $ \widetilde \Gamma $ | ||
+ | such that for the corresponding operators of [[Covariant differentiation|covariant differentiation]] $ \nabla $ | ||
+ | and $ \widetilde \nabla $ | ||
+ | there holds | ||
− | + | $$ | |
+ | Z B ( X , Y ) = B | ||
+ | ( \nabla _ {Z} X , Y ) + B | ||
+ | ( X , {\widetilde \nabla } _ {Z} Y ) + | ||
+ | 2 \omega (Z) B ( X , Y ) , | ||
+ | $$ | ||
− | + | where $ X , Y $ | |
+ | and $ Z $ | ||
+ | are arbitrary vector fields, $ B ( \cdot , \cdot ) $ | ||
+ | is a quadratic form (i.e. a symmetric bilinear form), and $ \omega ( \cdot ) $ | ||
+ | is a $ 1 $- | ||
+ | form (or covector field). One also says that $ \nabla $ | ||
+ | and $ \widetilde \nabla $ | ||
+ | are adjoint with respect to $ B $. | ||
+ | In coordinate form (where $ X , Y , Z \Rightarrow \partial _ {i} $, | ||
+ | $ B \Rightarrow b _ {ij} $, | ||
+ | $ \omega \Rightarrow \omega _ {i} $, | ||
+ | $ \nabla \Rightarrow \Gamma _ {ij} ^ {k} $), | ||
− | + | $$ | |
+ | \partial _ {k} b _ {ij} - | ||
+ | \Gamma _ {ki} ^ {s} b _ {sj} - | ||
+ | {\widetilde \Gamma } _ {kj} ^ {s} b _ {is} = \ | ||
+ | 2 \omega _ {k} b _ {ij} . | ||
+ | $$ | ||
− | + | For the curvature operators $ R $ | |
+ | and $ \widetilde{R} $ | ||
+ | and torsion operators $ T $ | ||
+ | and $ \widetilde{T} $ | ||
+ | of the connections $ \nabla $ | ||
+ | and $ \widetilde \nabla $, | ||
+ | respectively, the following relations hold: | ||
− | + | $$ | |
+ | B ( R ( U , Z ) X , Y ) + | ||
+ | B ( X , \widetilde{R} ( U , Z ) Y ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | 2 \{ \omega ( [ U , Z ] ) - U \omega | ||
+ | (Z) + Z \omega (U) \} B ( X , Y ) , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | B ( Z , \Delta T ( X , Y ) ) - B ( \Delta T ( Z , Y ) X ) = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
+ | B ( \Delta T ( Z , X ) , Y ) ,\ \Delta T = \widetilde{T} - T . | ||
+ | $$ | ||
In coordinate form, | In coordinate form, | ||
− | + | $$ | |
+ | R _ {rsj} ^ {m} b _ {im} + | ||
+ | {\widetilde{R} } _ {rsi} ^ {m} b _ {jm} = \ | ||
+ | - 2 ( \partial _ {r} \omega _ {s} - | ||
+ | \partial _ {s} \omega _ {r} ) b _ {ij} , | ||
+ | $$ | ||
− | + | $$ | |
+ | \Delta T _ {ij} ^ {s} b _ {sk} - \Delta T _ {kj} ^ {s} | ||
+ | b _ {si} - \Delta T _ {ki} ^ {s} b _ {sj} = 0 . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.P. Norden, "Spaces with an affine connection" , Nauka , Moscow-Leningrad (1976) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.P. Norden, "Spaces with an affine connection" , Nauka , Moscow-Leningrad (1976) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Instead of the name adjoint connections one also encounters conjugate connections. | Instead of the name adjoint connections one also encounters conjugate connections. | ||
− | Sometimes the | + | Sometimes the $ 1 $- |
+ | form $ \omega $ | ||
+ | is not mentioned in the notion of adjoint connections. Strictly speaking this notion of an "adjoint connection" should be called "adjoint with respect to B and w" . |
Latest revision as of 16:09, 1 April 2020
Linear connections $ \Gamma $
and $ \widetilde \Gamma $
such that for the corresponding operators of covariant differentiation $ \nabla $
and $ \widetilde \nabla $
there holds
$$ Z B ( X , Y ) = B ( \nabla _ {Z} X , Y ) + B ( X , {\widetilde \nabla } _ {Z} Y ) + 2 \omega (Z) B ( X , Y ) , $$
where $ X , Y $ and $ Z $ are arbitrary vector fields, $ B ( \cdot , \cdot ) $ is a quadratic form (i.e. a symmetric bilinear form), and $ \omega ( \cdot ) $ is a $ 1 $- form (or covector field). One also says that $ \nabla $ and $ \widetilde \nabla $ are adjoint with respect to $ B $. In coordinate form (where $ X , Y , Z \Rightarrow \partial _ {i} $, $ B \Rightarrow b _ {ij} $, $ \omega \Rightarrow \omega _ {i} $, $ \nabla \Rightarrow \Gamma _ {ij} ^ {k} $),
$$ \partial _ {k} b _ {ij} - \Gamma _ {ki} ^ {s} b _ {sj} - {\widetilde \Gamma } _ {kj} ^ {s} b _ {is} = \ 2 \omega _ {k} b _ {ij} . $$
For the curvature operators $ R $ and $ \widetilde{R} $ and torsion operators $ T $ and $ \widetilde{T} $ of the connections $ \nabla $ and $ \widetilde \nabla $, respectively, the following relations hold:
$$ B ( R ( U , Z ) X , Y ) + B ( X , \widetilde{R} ( U , Z ) Y ) = $$
$$ = \ 2 \{ \omega ( [ U , Z ] ) - U \omega (Z) + Z \omega (U) \} B ( X , Y ) , $$
$$ B ( Z , \Delta T ( X , Y ) ) - B ( \Delta T ( Z , Y ) X ) = $$
$$ = \ B ( \Delta T ( Z , X ) , Y ) ,\ \Delta T = \widetilde{T} - T . $$
In coordinate form,
$$ R _ {rsj} ^ {m} b _ {im} + {\widetilde{R} } _ {rsi} ^ {m} b _ {jm} = \ - 2 ( \partial _ {r} \omega _ {s} - \partial _ {s} \omega _ {r} ) b _ {ij} , $$
$$ \Delta T _ {ij} ^ {s} b _ {sk} - \Delta T _ {kj} ^ {s} b _ {si} - \Delta T _ {ki} ^ {s} b _ {sj} = 0 . $$
References
[1] | A.P. Norden, "Spaces with an affine connection" , Nauka , Moscow-Leningrad (1976) (In Russian) |
Comments
Instead of the name adjoint connections one also encounters conjugate connections.
Sometimes the $ 1 $- form $ \omega $ is not mentioned in the notion of adjoint connections. Strictly speaking this notion of an "adjoint connection" should be called "adjoint with respect to B and w" .
Adjoint connections. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Adjoint_connections&oldid=45035