Difference between revisions of "Cosecant"
(TeX) |
m (spacing) |
||
Line 14: | Line 14: | ||
The integral of the cosecant is: | The integral of the cosecant is: | ||
− | $$\int\operatorname{cosec} | + | $$\int\operatorname{cosec}x\,dx=\ln\left|\operatorname{tg}\frac x2\right|+C.$$ |
The series expansion is: | The series expansion is: | ||
− | $$\operatorname{cosec}x=\frac1x+\frac x6+\frac{7x^3}{360}+\frac{31x^5}{15120}+\ | + | $$\operatorname{cosec}x=\frac1x+\frac x6+\frac{7x^3}{360}+\frac{31x^5}{15120}+\dotsb,\quad0<|x|<\pi.$$ |
Latest revision as of 14:15, 14 February 2020
One of the trigonometric functions:
$$y=\operatorname{cosec}x=\frac{1}{\sin x};$$
other notations are $\csc x$, $\operatorname{cosc}x$. The domain of definition is the entire real line with the exception of the points with abscissas
$$x=\pi n,\quad n=0,\pm1,\pm2,\mathinner{\ldotp\ldotp\ldotp\ldotp}$$
The cosecant is an unbounded odd periodic function (with period $2\pi$). Its derivative is:
$$(\operatorname{cosec}x)'=-\frac{\cos x}{\sin^2x}=-\operatorname{cotg}x\operatorname{cosec}x.$$
The integral of the cosecant is:
$$\int\operatorname{cosec}x\,dx=\ln\left|\operatorname{tg}\frac x2\right|+C.$$
The series expansion is:
$$\operatorname{cosec}x=\frac1x+\frac x6+\frac{7x^3}{360}+\frac{31x^5}{15120}+\dotsb,\quad0<|x|<\pi.$$
Comments
See also Sine.
Cosecant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cosecant&oldid=44646