Namespaces
Variants
Actions

Difference between revisions of "Algebraic system"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex done)
 
Line 1: Line 1:
 +
{{TEX|done}}
 +
 
A set with operations and relations defined on it. An algebraic system is one of the basic mathematical concepts and its general theory has been developed in depth. This was done in the 1950s, and the work took place on the interface between algebra and mathematical logic.
 
A set with operations and relations defined on it. An algebraic system is one of the basic mathematical concepts and its general theory has been developed in depth. This was done in the 1950s, and the work took place on the interface between algebra and mathematical logic.
  
 
==Fundamental concepts.==
 
==Fundamental concepts.==
An algebraic system is an object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a0116501.png" /> consisting of a non-empty set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a0116502.png" />, a family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a0116503.png" /> of algebraic operations (cf. [[Algebraic operation|Algebraic operation]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a0116504.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a0116505.png" />) and a family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a0116506.png" /> of relations (cf. [[Relation|Relation]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a0116507.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a0116508.png" />) defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a0116509.png" />. The indices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165010.png" /> of the Cartesian powers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165011.png" /> under consideration are assumed to be non-negative integers and are said to be the arities of the respective operations and relations. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165012.png" /> is called the carrier or the underlying set of the algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165013.png" />, while its elements are called the elements of this system. The cardinality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165014.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165015.png" /> is said to be the cardinality or order of the algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165016.png" />. The image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165017.png" /> of the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165018.png" /> under the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165019.png" /> is called the value of the operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165020.png" /> at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165021.png" />. Similarly, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165022.png" />, then one says that the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165023.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165024.png" /> are in relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165025.png" />, and one writes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165026.png" />. The operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165027.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165028.png" />) and the relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165029.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165030.png" />), unlike other operations and relations that may be defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165031.png" />, are called basic or primitive.
+
An algebraic system is an object $  \mathbf A = \langle A,\  O,\  R \rangle $
 +
consisting of a non-empty set $  A $,  
 +
a family $  O $
 +
of algebraic operations (cf. [[Algebraic operation|Algebraic operation]]) $  o _{i} : \  A ^ {n _ i} \rightarrow A $(
 +
$  i \in I $)  
 +
and a family $  R $
 +
of relations (cf. [[Relation|Relation]]) $  r _{j} \subseteq A ^ {m _ j} $(
 +
$  j \in J $)  
 +
defined on $  A $.  
 +
The indices $  n _{i} ,\  m _{j} $
 +
of the Cartesian powers of $  A $
 +
under consideration are assumed to be non-negative integers and are said to be the arities of the respective operations and relations. The set $  A $
 +
is called the carrier or the underlying set of the algebraic system $  \mathbf A $,  
 +
while its elements are called the elements of this system. The cardinality $  | A | $
 +
of $  A $
 +
is said to be the cardinality or order of the algebraic system $  \mathbf A $.  
 +
The image $  o _{i} (a _{1} \dots a _{ {n _ i}} ) $
 +
of the element $  (a _{1} \dots a _{ {n _ i}} ) \in A ^ {n _ i} $
 +
under the mapping $  o _{i} : \  A ^ {n _ i} \rightarrow A $
 +
is called the value of the operation $  o _{i} $
 +
at the point $  ( a _{1} \dots a _{ {n _ i}} ) $.  
 +
Similarly, if $  (a _{1} \dots a _{ {m _ j}} ) \in r _{j} $,  
 +
then one says that the elements $  a _{1} \dots a _{ {m _ j}} $
 +
of $  A $
 +
are in relation $  r _{j} $,  
 +
and one writes $  r _{j} ( a _{1} \dots a _{ {m _ j}} ) $.  
 +
The operations $  o _{i} $(
 +
$  i \in I $)  
 +
and the relations $  r _{j} $(
 +
$  j \in J $),  
 +
unlike other operations and relations that may be defined on $  A $,  
 +
are called basic or primitive.
  
The pair of families <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165032.png" /> is called the type of the algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165033.png" />. Two algebraic systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165034.png" /> have the same type if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165038.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165040.png" />. Basic operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165042.png" /> and basic relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165044.png" /> of two algebraic systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165046.png" /> of the same type, with identical indices in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165047.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165048.png" /> respectively, are called similar.
+
The pair of families $  \langle  \{ {n _ i} : {i \in I} \} ; \  \{ {m _ j} : {j \in J} \} \rangle $
 +
is called the type of the algebraic system $  \mathbf A $.  
 +
Two algebraic systems $  \mathbf A ,\  \mathbf A^ \prime  $
 +
have the same type if $  I = I^ \prime  $,  
 +
$  J = J^ \prime  $
 +
and $  n _{i} = n _ i^ \prime  $,  
 +
$  m _{j} = m _ j^ \prime  $
 +
for all $  i \in I $,  
 +
$  j \in J $.  
 +
Basic operations $  o _{i} $,  
 +
$  o _ i^ \prime  $
 +
and basic relations $  r _{j} $,  
 +
$  r _ j^ \prime  $
 +
of two algebraic systems $  \mathbf A $,  
 +
$  \mathbf A^ \prime  $
 +
of the same type, with identical indices in $  I $,  
 +
$  J $
 +
respectively, are called similar.
  
An algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165049.png" /> is called finite if the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165050.png" /> is finite and it is called of finite type if the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165051.png" /> is finite. An algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165052.png" /> of finite type is written as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165053.png" />.
+
An algebraic system $  \mathbf A $
 +
is called finite if the set $  A $
 +
is finite and it is called of finite type if the set $  I \cup J $
 +
is finite. An algebraic system $  \mathbf A $
 +
of finite type is written as $  A = \langle A; \  o _{1} \dots o _{s} ,\  r _{1} \dots r _{t} \rangle $.
  
An algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165054.png" /> is called a [[Universal algebra|universal algebra]] or an algebra if the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165055.png" /> of its basic relations is empty, and it is called a [[Model (in logic)|model (in logic)]] or a relational system if the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165056.png" /> of basic operations is empty. Classical algebraic systems are groups, rings, linear spaces, linear algebras, totally ordered sets, totally ordered groups, lattices, etc.
+
An algebraic system $  \mathbf A = \langle A,\  O,\  R\rangle $
 +
is called a [[Universal algebra|universal algebra]] or an algebra if the set $  R $
 +
of its basic relations is empty, and it is called a [[Model (in logic)|model (in logic)]] or a relational system if the set $  O $
 +
of basic operations is empty. Classical algebraic systems are groups, rings, linear spaces, linear algebras, totally ordered sets, totally ordered groups, lattices, etc.
  
A non-empty subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165057.png" /> of the underlying set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165058.png" /> of an algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165059.png" /> is called closed if for any elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165060.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165061.png" /> the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165062.png" /> of each basic operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165063.png" /> also belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165064.png" />. By considering the operations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165065.png" /> and the relations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165066.png" /> on a closed subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165067.png" />, one obtains an algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165068.png" /> which is of the same type as the given algebraic system and is called a subsystem of the algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165069.png" />. Subsystems of algebras are called subalgebras, while subsystems of models are called submodels. The concept of a subalgebra strongly depends on the set of basic operations of the algebra under consideration. Thus, a groupoid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165070.png" /> is an algebra of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165071.png" />, i.e. an algebra with one basic operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165072.png" />. A groupoid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165073.png" /> with a distinguished unit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165074.png" /> is an algebra of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165075.png" />, the distinguished element of which has the property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165076.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165077.png" /> with respect to the basic operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165078.png" />. For this reason any subgroupoid of a groupoid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165079.png" /> with a distinguished unit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165080.png" /> contains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165081.png" />, while a subgroupoid of a groupoid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165082.png" /> does not necessarily contain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165083.png" />. Unlike algebras, any non-empty subset of a model may be considered as a submodel.
+
A non-empty subset $  B $
 +
of the underlying set $  A $
 +
of an algebraic system $  \mathbf A = \langle  A,\  O,\  R \rangle $
 +
is called closed if for any elements $  b _{1} \dots b _{ {n _ i}} $
 +
of $  B $
 +
the value $  o _{i} (b _{1} \dots b _{ {n _ i}} ) $
 +
of each basic operation $  o _{i} \in O $
 +
also belongs to $  B $.  
 +
By considering the operations of $  O $
 +
and the relations of $  R $
 +
on a closed subset $  B $,  
 +
one obtains an algebraic system $  \mathbf B = \langle  B ,\  O^ \prime  ,\  R^ \prime  \rangle $
 +
which is of the same type as the given algebraic system and is called a subsystem of the algebraic system $  \mathbf A $.  
 +
Subsystems of algebras are called subalgebras, while subsystems of models are called submodels. The concept of a subalgebra strongly depends on the set of basic operations of the algebra under consideration. Thus, a groupoid $  \mathbf G $
 +
is an algebra of type $  \langle 2\rangle $,  
 +
i.e. an algebra with one basic operation $  G \times G \rightarrow G $.  
 +
A groupoid $  \mathbf H $
 +
with a distinguished unit $  e $
 +
is an algebra of type $  \langle 2,\  0\rangle $,  
 +
the distinguished element of which has the property $  o(e,\  h) = o(h,\  e) = h $
 +
for all $  h \in H $
 +
with respect to the basic operation $  o : \  H \times H \rightarrow H $.  
 +
For this reason any subgroupoid of a groupoid $  \mathbf H $
 +
with a distinguished unit $  e $
 +
contains $  e $,  
 +
while a subgroupoid of a groupoid $  \langle  H,\  o \rangle $
 +
does not necessarily contain $  e $.  
 +
Unlike algebras, any non-empty subset of a model may be considered as a submodel.
  
An algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165084.png" /> is isomorphic to an algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165085.png" /> of the same type if there exists a one-to-one mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165086.png" /> of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165087.png" /> into the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165088.png" /> such that
+
An algebraic system $  \mathbf A $
 +
is isomorphic to an algebraic system $  \mathbf A^ \prime  $
 +
of the same type if there exists a one-to-one mapping $  \phi $
 +
of the set $  A $
 +
into the set $  A^ \prime  $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165089.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1}
 +
\phi ( o _ i^ \prime  ( a _{1} \dots a _{ {n _ i}} ) ) \  = \
 +
o _ i^ \prime  ( \phi ( a _{1} ) \dots \phi ( a _{ {n _ i}} ) ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165090.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2}
 +
r _{j} ( a _{1} \dots a _{ {m _ j}} ) \  \iff \  r _ j^ \prime  ( \phi ( a _{1} ) \dots \phi ( a _{ {m _ j}} ) ),
 +
$$
  
holds for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165091.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165092.png" /> and for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165093.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165094.png" />. A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165095.png" /> possessing these properties is called an isomorphism.
+
holds for all $  a _{1} ,\  a _{2} \dots $
 +
of $  A $
 +
and for all $  i \in I $,  
 +
$  j \in J $.  
 +
A mapping $  \phi $
 +
possessing these properties is called an isomorphism.
  
In the following, a class of algebraic systems will be understood to mean only an abstract class, i.e. a class of algebraic systems of the same type which, whenever it contains a system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165096.png" />, also contains all systems isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165097.png" />. In considering a class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165098.png" /> of algebraic systems, all systems in this class are usually written in a definite signature, as follows. Let the type of the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165099.png" /> be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650100.png" />. To each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650101.png" /> is assigned some symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650102.png" />, called a functional, while to each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650103.png" /> is assigned a symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650104.png" />, called a predicate. If an algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650105.png" /> belongs to the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650106.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650107.png" /> is a basic operation in it, then the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650108.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650109.png" /> is written as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650110.png" />. Similarly, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650111.png" /> is a basic relation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650112.png" /> and the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650113.png" />, then one writes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650114.png" /> (true) or simply <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650115.png" />. If, on the other hand, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650116.png" />, one writes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650117.png" /> (false) or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650118.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650119.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650120.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650121.png" /> be the mapping of the union <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650122.png" /> into the set of natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650123.png" />, defined by the formulas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650124.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650125.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650126.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650127.png" />). The object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650128.png" /> is the signature of the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650129.png" />. A finite signature is written as a string <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650130.png" /> or, more briefly, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650131.png" />. An algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650132.png" />, written in the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650133.png" />, is known as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650135.png" />-system and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650136.png" />.
+
In the following, a class of algebraic systems will be understood to mean only an abstract class, i.e. a class of algebraic systems of the same type which, whenever it contains a system $  \mathbf A $,  
 +
also contains all systems isomorphic to $  \mathbf A $.  
 +
In considering a class $  \mathfrak K $
 +
of algebraic systems, all systems in this class are usually written in a definite signature, as follows. Let the type of the class $  \mathfrak K $
 +
be  $  \langle  \{ {n _ i} : {i \in I} \} ; \  \{ {m _ j} : {j \in J} \} \rangle $.  
 +
To each $  i \in I $
 +
is assigned some symbol $  F _{i} $,  
 +
called a functional, while to each $  j \in J $
 +
is assigned a symbol $  P _{j} $,  
 +
called a predicate. If an algebraic system $  \mathbf A $
 +
belongs to the class $  \mathfrak K $
 +
and if $  o _{i} : \  A^{n} _{i} \rightarrow A $
 +
is a basic operation in it, then the element $  o _{i} ( a _{1} \dots a _{ {n _ i}} ) $
 +
of $  A $
 +
is written as $  F _{i} ( a _{1} \dots a _{ {n _ i}} ) $.  
 +
Similarly, if $  r _{j} \subseteq A^{m} _{j} $
 +
is a basic relation in $  A $
 +
and the element $  ( a _{1} \dots a _{ {m _ j}} ) \in r _{j} $,  
 +
then one writes $  P _{j} ( a _{1} \dots a _{ {m _ j}} ) = T $(
 +
true) or simply $  P _{j} ( a _{1} \dots a _{ {m _ j}} ) $.  
 +
If, on the other hand, $  ( a _{1} \dots a _{ {m _ j}} ) \notin r _{j} $,  
 +
one writes $  P _{j} ( a _{1} \dots a _{ {m _ j}} ) = F $(
 +
false) or $  \neg P _{j} ( a _{1} \dots a _{ {m _ j}} ) $.  
 +
Let $  \Omega _{f} = \{ {F _ j} : {i \in I} \} $,  
 +
$  \Omega _{p} = \{ {P _ j} : {j \in J} \} $
 +
and let $  \nu $
 +
be the mapping of the union $  \Omega _{f} \cup \Omega _{p} $
 +
into the set of natural numbers $  \{ 0,\  1,\  2 ,\dots \} $,
 +
defined by the formulas $  \nu ( F _{i} ) = n _{i} $(
 +
$  i \in I $),  
 +
$  \nu (P _{j} ) = m _{j} $(
 +
$  j \in J $).  
 +
The object $  \Omega = \langle  \Omega _{f} ,\  \Omega _{p} ,\  \nu \rangle $
 +
is the signature of the class $  \mathfrak K $.  
 +
A finite signature is written as a string $  \langle  F _{1} ^ {( n _{1} )} \dots F _{s} ^ {(n _{s} )} ; \  P _{1} ^ {( m _{1} )} \dots P _{t} ^ {( m _{t} )} \rangle $
 +
or, more briefly, $  \langle  F _{1} \dots F _{s} ; \  P _{1} \dots P _{t} \rangle $.  
 +
An algebraic system $  \mathbf A $,  
 +
written in the signature $  \Omega $,  
 +
is known as an $  \Omega $-
 +
system and is denoted by $  \mathbf A = \langle  A,\  \Omega \rangle $.
  
The conditions (1) and (2) for an isomorphism of the systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650137.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650138.png" /> become simplified if the systems are considered in one signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650139.png" />. Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650140.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650141.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650142.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650143.png" />) are the signature symbols, equations (1) and (2) assume the form
+
The conditions (1) and (2) for an isomorphism of the systems $  \mathbf A $
 +
and $  \mathbf A^ \prime  $
 +
become simplified if the systems are considered in one signature $  \Omega $.  
 +
Thus, if $  F _{i} $(
 +
$  i \in I $)  
 +
and $  P _{j} $(
 +
$  j \in J $)  
 +
are the signature symbols, equations (1) and (2) assume the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650144.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3}
 +
\phi ( F _{i} ( a _{1} \dots a _{ {n _ i}} ) ) \  = \  F _{i} ( \phi ( a _{1} ) \dots \phi ( a _{ {n _ i}} ) ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650145.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4}
 +
P _{j} ( a _{1} \dots a _{ {m _ j}} ) \  \iff \  P _{j} ( \phi ( a _{1} ) \dots \phi ( a _{ {m _ j}} ) ) .
 +
$$
  
A homomorphism of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650147.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650148.png" /> into an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650149.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650150.png" /> is any mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650151.png" /> which fulfills both condition (3) and the condition
+
A homomorphism of an $  \Omega $-
 +
system $  \mathbf A $
 +
into an $  \Omega $-
 +
system $  \mathbf A^ \prime  $
 +
is any mapping $  \phi : \  A \rightarrow A^ \prime  $
 +
which fulfills both condition (3) and the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650152.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
$$ \tag{5}
 +
P _{j} ( a _{1} \dots a _{ {m _ j}} ) \  \Rightarrow \  P _{j} ( \phi ( a _{1} ) \dots \phi ( a _{ {m _ j}} ) )
 +
$$
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650153.png" /> and for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650154.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650155.png" />. A homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650156.png" /> is called strong if, for any elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650158.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650159.png" /> and for any predicate symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650160.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650161.png" />, the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650162.png" /> implies the existence in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650163.png" /> of pre-images <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650164.png" /> of the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650165.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650166.png" />. The concepts of a homomorphism and of a strong homomorphism of algebras are identical. Models have homomorphisms that are not strong, and have one-to-one homomorphisms that are not isomorphisms. Under a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650167.png" />, images of subsystems of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650168.png" /> are subsystems in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650169.png" />; and non-empty complete pre-images of subsystems of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650170.png" /> are subsystems in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650171.png" />.
+
for all $  F _{i} \in \Omega _{f} ,\  P _{j} \in \Omega _{p} $
 +
and for all $  a _{1} ,\  a _{2} \dots $
 +
of $  A $.  
 +
A homomorphism $  \phi : \  \mathbf A \rightarrow \mathbf A^ \prime  $
 +
is called strong if, for any elements $  b _{1} \dots b _{ {m _ j}} $
 +
of $  A^ \prime  $
 +
and for any predicate symbol $  P _{j} $
 +
of $  \Omega _{p} $,  
 +
the relation $  P _{j} (b _{1} \dots b _{ {m _ j}} ) = T $
 +
implies the existence in $  A $
 +
of pre-images $  a _{1} \dots a _{ {m _ j}} $
 +
of the elements $  b _{1} \dots b _{ {m _ j}} $
 +
such that $  P _{j} (a _{1} \dots a _{ {m _ j}} ) = T $.  
 +
The concepts of a homomorphism and of a strong homomorphism of algebras are identical. Models have homomorphisms that are not strong, and have one-to-one homomorphisms that are not isomorphisms. Under a homomorphism $  \phi : \  \mathbf A \rightarrow \mathbf A^ \prime  $,  
 +
images of subsystems of $  \mathbf A $
 +
are subsystems in $  \mathbf A^ \prime  $;  
 +
and non-empty complete pre-images of subsystems of $  \mathbf A^ \prime  $
 +
are subsystems in $  \mathbf A $.
  
An equivalence relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650172.png" /> is called a congruence of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650174.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650175.png" /> if
+
An equivalence relation $  \theta \subseteq A \times A $
 +
is called a congruence of the $  \Omega $-
 +
system $  \mathbf A $
 +
if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650176.png" /></td> </tr></table>
+
$$
 +
\theta ( a _{1} ,\  b _{1} ) \dots \theta ( a _{ {n _ i}} ,
 +
\  b _{ {n _ i}} )\  \Rightarrow
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650177.png" /></td> </tr></table>
+
$$
 +
\Rightarrow \
 +
\theta ( F _{i} ( a _{1} \dots a _{ {n _ i}} ) ,\
 +
F _{i} ( b _{1} \dots b _{ {n _ i}} ) )
 +
$$
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650178.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650179.png" /> and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650180.png" />. For each homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650181.png" /> of an algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650182.png" /> the binary relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650183.png" /> which holds if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650184.png" /> is a congruence in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650185.png" />, called its kernel congruence. For any congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650186.png" /> of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650187.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650188.png" /> and for each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650189.png" /> the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650190.png" /> is called a coset of the algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650191.png" /> by the congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650192.png" />. On the assumption that, for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650193.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650194.png" />,
+
for all $  a _{1} ,\  b _{1} \dots a _{ {n _ i}} ,\  b _{ {n _ i}} $
 +
of $  A $
 +
and all $  F _{i} \in \Omega _{f} $.  
 +
For each homomorphism $  \phi $
 +
of an algebraic system $  \mathbf A $
 +
the binary relation $  \theta (a,\  b) $
 +
which holds if and only if $  \phi (a) = \phi (b) $
 +
is a congruence in $  \mathbf A $,  
 +
called its kernel congruence. For any congruence $  \theta $
 +
of an $  \Omega $-
 +
system $  \mathbf A $
 +
and for each element a \in A $
 +
the set $  a / \theta = \{ {x \in A} : {\theta (x,\  a)} \} $
 +
is called a coset of the algebraic system $  \mathbf A $
 +
by the congruence $  \theta $.  
 +
On the assumption that, for each $  F _{i} \in \Omega _{f} $,  
 +
$  P _{j} \in \Omega _{p} $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650195.png" /></td> </tr></table>
+
$$
 +
F _{i} ( a _{1} / \theta \dots a _{ {n _ i}} / \theta ) \  = \
 +
F _{i} ( a _{1} \dots a _{ {n _ i}} ) / \theta
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650196.png" /></td> </tr></table>
+
$$
 +
P _{j} ( b _{1} / \theta \dots b _{ {m _ j}} / \theta ) \  = \  T
 +
$$
  
if and only if there exist elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650197.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650198.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650199.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650200.png" />, one obtains the algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650201.png" />, which is of the same type as the given system; it is called the quotient system of the algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650202.png" /> by the congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650203.png" />. For each congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650204.png" /> of an algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650205.png" /> the canonical mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650206.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650207.png" />) is a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650208.png" /> onto the quotient system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650209.png" /> for which the given congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650210.png" /> is the kernel congruence. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650211.png" /> is a homomorphism of an algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650212.png" /> into an algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650213.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650214.png" /> is the kernel congruence for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650215.png" />, then the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650216.png" /> is a homomorphism of the quotient system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650217.png" /> into the algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650218.png" />. If the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650219.png" /> is strong, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650220.png" /> is an isomorphism.
+
if and only if there exist elements $  c _{1} \dots c _{ {m _ j}} $
 +
in $  A $
 +
such that $  \theta (b _{1} ,\  c _{1} ) \dots \theta ( b _{ {m _ j}} ,\  c _{ {m _ j}} ) $
 +
and $  P _{j} (c _{1} \dots c _{ {m _ j}} ) $,  
 +
one obtains the algebraic system $  \mathbf A / \theta $,  
 +
which is of the same type as the given system; it is called the quotient system of the algebraic system $  \mathbf A $
 +
by the congruence $  \theta $.  
 +
For each congruence $  \theta $
 +
of an algebraic system $  \mathbf A $
 +
the canonical mapping $  \phi (a) = a/ \theta $(
 +
a \in A $)  
 +
is a homomorphism of $  \mathbf A $
 +
onto the quotient system $  \mathbf A / \theta $
 +
for which the given congruence $  \theta $
 +
is the kernel congruence. If $  \phi $
 +
is a homomorphism of an algebraic system $  \mathbf A $
 +
into an algebraic system $  \mathbf A^ \prime  $
 +
and $  \theta $
 +
is the kernel congruence for $  \phi $,  
 +
then the mapping $  \psi ( a/ \theta ) = \phi (a) $
 +
is a homomorphism of the quotient system $  \mathbf A / \theta $
 +
into the algebraic system $  \mathbf A^ \prime  $.  
 +
If the homomorphism $  \phi $
 +
is strong, $  \psi $
 +
is an isomorphism.
  
The Cartesian product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650222.png" />-systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650223.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650224.png" />, is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650225.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650226.png" /> in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650227.png" /> is the Cartesian product of the underlying sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650228.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650229.png" />) and the basic operations and the basic relations on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650230.png" /> are given by the conditions: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650231.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650232.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650233.png" />) is the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650234.png" /> with coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650235.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650236.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650237.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650238.png" />) if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650239.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650240.png" />.
+
The Cartesian product of $  \Omega $-
 +
systems $  \mathbf A _ \alpha  = \langle  A _ \alpha  ,\  \Omega \rangle $,  
 +
$  \alpha \in \Lambda \neq \emptyset $,  
 +
is the $  \Omega $-
 +
system $  \mathbf D = \langle  D,\  \Omega \rangle $
 +
in which $  D $
 +
is the Cartesian product of the underlying sets $  A _ \alpha  $(
 +
$  \alpha \in \Lambda $)  
 +
and the basic operations and the basic relations on $  D $
 +
are given by the conditions: $  F _{i} ( d _{1} \dots d _{ {n _ i}} ) $(
 +
$  d _{1} \dots d _{ {n _ i}} \in D $,  
 +
$  F _{i} \in \Lambda _{f} $)  
 +
is the element $  d \in D $
 +
with coordinates $  d ( \alpha ) = F _{i} ( d _{1} ( \alpha ) \dots d _{ {n _ i}} ( \alpha ) ) $(
 +
$  \alpha \in \Lambda $),  
 +
$  P _{j} ( d _{1} \dots d _{ {m _ j}} ) = T $(
 +
$  P _{j} \in \Omega _{p} $)  
 +
if and only if $  P _{j} ( d _{1} ( \alpha ) \dots d _{ {m _ j}} ( \alpha ) ) = T $
 +
for all $  \alpha \in \Lambda $.
  
 
==A language of the first order.==
 
==A language of the first order.==
The basic formal language of the theory of algebraic systems is the first-order language <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650241.png" /> which is constructed as follows. The alphabet of the language <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650242.png" /> in the given signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650243.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650244.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650245.png" />, consists of the object variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650246.png" /> the function symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650247.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650248.png" />), the predicate symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650249.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650250.png" />), the logical connectives
+
The basic formal language of the theory of algebraic systems is the first-order language $  L $
 +
which is constructed as follows. The alphabet of the language $  L $
 +
in the given signature $  \Omega = \langle  \Omega _{f} ,\  \Omega _{p} ,\  \nu \rangle $,  
 +
$  \Omega _{f} = \{ {F _ i} : {i \in I} \} $,  
 +
$  \Omega _{p} = \{ {P _ j} : {j \in J} \} $,  
 +
consists of the object variables $  x _{1} ,\  x _{2} \dots $
 +
the function symbols $  F _{i} $(
 +
$  i \in I $),  
 +
the predicate symbols $  P _{j} $(
 +
$  j \in J $),  
 +
the logical connectives
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650251.png" /></td> </tr></table>
+
$$
 +
\& ,\ \  \lor ,\ \  \rightarrow ,\ \  \neg ,\ \  =,
 +
$$
  
 
the quantifiers:
 
the quantifiers:
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650252.png" /> —  "for each element xk" ;
+
$  \forall x _{k} $
 +
—  "for each element xk" ;
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650253.png" /> —  "there exists an element xk" ;
+
$  \exists x _{k} $
 +
—  "there exists an element xk" ;
  
and the auxiliary symbols: brackets and commas. The (first-order) properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650254.png" />-systems are expressed by finite sequences of alphabet symbols, or words, constructed in accordance with specific rules and known as terms and formulas. It is inductively assumed that each word of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650257.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650258.png" /> is a term if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650259.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650260.png" /> are terms and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650261.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650262.png" /> is also a term.
+
and the auxiliary symbols: brackets and commas. The (first-order) properties of $  \Omega $-
 +
systems are expressed by finite sequences of alphabet symbols, or words, constructed in accordance with specific rules and known as terms and formulas. It is inductively assumed that each word of the form $  x _{k} $
 +
or $  F _{i} $
 +
is a term if $  \nu (F _{i} ) = 0 $;  
 +
if $  f _{1} \dots f _{n} $
 +
are terms and if $  n = \nu (F _{i} ) $,  
 +
then $  F _{i} (f _{1} \dots f _{n} ) $
 +
is also a term.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650263.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650264.png" />-system and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650265.png" /> is a term of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650266.png" /> containing object variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650267.png" />, then if one replaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650268.png" /> by some elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650269.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650270.png" />, and executes the operations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650271.png" /> on the latter elements corresponding to the symbols of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650272.png" /> forming part of this term, then one obtains an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650273.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650274.png" />, which is called the value of the term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650276.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650277.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650278.png" /> is a homomorphism of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650279.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650280.png" /> into an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650281.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650282.png" />, then
+
If $  \mathbf A $
 +
is an $  \Omega $-
 +
system and if $  f (x _{1} \dots x _{n} ) $
 +
is a term of the signature $  \Omega $
 +
containing object variables $  x _{1} \dots x _{k} $,  
 +
then if one replaces $  x _{1} \dots x _{k} $
 +
by some elements $  a _{1} \dots a _{k} $
 +
in $  A $,  
 +
and executes the operations in $  \mathbf A $
 +
on the latter elements corresponding to the symbols of $  \Omega _{f} $
 +
forming part of this term, then one obtains an element $  f (a _{1} \dots a _{k} ) $
 +
from $  A $,  
 +
which is called the value of the term $  f (x _{1} \dots x _{k} ) $
 +
for  $  x _{1} = a _{1} \dots x _{k} = a _{k} $.  
 +
If $  \phi $
 +
is a homomorphism of an $  \Omega $-
 +
system $  \mathbf A $
 +
into an $  \Omega $-
 +
system $  \mathbf A^ \prime  $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650283.png" /></td> </tr></table>
+
$$
 +
\phi ( f ( a _{1} \dots a _{k} ) ) \  = \  f ( \phi ( a _{1} ) \dots
 +
\phi ( a _{k} ) ) .
 +
$$
  
The concept of a formula of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650284.png" />, and of free and bound object variables in it, is also defined inductively:
+
The concept of a formula of the signature $  \Omega $,  
 +
and of free and bound object variables in it, is also defined inductively:
  
1) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650285.png" /> is any predicate symbol for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650286.png" /> or the equality sign <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650287.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650288.png" /> or 2 respectively, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650289.png" /> are arbitrary terms of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650290.png" />, then the word <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650291.png" /> is a formula in which all object variables are free.
+
1) If $  P $
 +
is any predicate symbol for $  \Omega $
 +
or the equality sign = $,  
 +
$  m = \nu (P) $
 +
or 2 respectively, and if $  f _{1} \dots f _{m} $
 +
are arbitrary terms of the signature $  \Omega $,  
 +
then the word $  P( f _{1} \dots f _{m} ) $
 +
is a formula in which all object variables are free.
  
2) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650292.png" /> is a formula, so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650293.png" />. Free (bound) object variables in the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650294.png" /> are those and only those variables which are free (bound) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650295.png" />.
+
2) If $  \mathfrak F $
 +
is a formula, so is $  \neg \mathfrak F $.  
 +
Free (bound) object variables in the formula $  \neg \mathfrak F $
 +
are those and only those variables which are free (bound) in $  \mathfrak F $.
  
3) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650296.png" /> are formulas and if the object variables which form part of both formulas are free in both formulas, then the words
+
3) If $  \mathfrak F _{1} ,\  \mathfrak F _{2} $
 +
are formulas and if the object variables which form part of both formulas are free in both formulas, then the words
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650297.png" /></td> <td valign="top" style="width:5%;text-align:right;">(6)</td></tr></table>
+
$$ \tag{6}
 +
\mathfrak F _{1} \& \mathfrak F _{2} ,\ \  \mathfrak F _{1} \lor
 +
\mathfrak F _{2} ,\ \  \mathfrak F _{1} \rightarrow \mathfrak F _{2} ,
 +
$$
  
 
are also formulas.
 
are also formulas.
  
Object variables which are free (bound) in at least one of the formulas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650298.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650299.png" /> are called free (bound) in the formulas (6) as well.
+
Object variables which are free (bound) in at least one of the formulas $  \mathfrak F _{1} $,  
 +
$  \mathfrak F _{2} $
 +
are called free (bound) in the formulas (6) as well.
  
4) If an object variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650300.png" /> occurs free in a formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650301.png" />, then the words <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650302.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650303.png" /> are again formulas in which the variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650304.png" /> is bound, while all the other object variables which occur free or bound in the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650305.png" /> remain free or bound in the formulas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650306.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650307.png" /> as well.
+
4) If an object variable $  x _{k} $
 +
occurs free in a formula $  \mathfrak F $,  
 +
then the words $  ( \forall x _{k} ) \mathfrak F $,  
 +
$  ( \exists x _{k} ) \mathfrak F $
 +
are again formulas in which the variable $  x _{k} $
 +
is bound, while all the other object variables which occur free or bound in the formula $  \mathfrak F $
 +
remain free or bound in the formulas $  ( \forall x _{k} ) \mathfrak F $,  
 +
$  ( \exists x _{k} ) \mathfrak F $
 +
as well.
  
Let an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650308.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650309.png" /> and a formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650310.png" /> of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650311.png" /> be given. If one now assigns to all free object variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650312.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650313.png" /> some values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650314.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650315.png" /> and if one interprets the function and the predicate symbols forming part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650316.png" /> as the respective basic operations and basic relations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650317.png" />, then one obtains a definite statement which may be true or false. One accordingly assigns to the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650318.png" /> the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650319.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650320.png" />, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650321.png" /> denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650322.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650323.png" /> is an isomorphic mapping of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650324.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650325.png" /> into an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650326.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650327.png" />, then
+
Let an $  \Omega $-
 +
system $  \mathbf A $
 +
and a formula $  \mathfrak F $
 +
of the signature $  \Omega $
 +
be given. If one now assigns to all free object variables $  x _{1} \dots x _{k} $
 +
from $  \mathfrak F $
 +
some values $  a _{1} \dots a _{k} $
 +
from $  A $
 +
and if one interprets the function and the predicate symbols forming part of $  \mathfrak F $
 +
as the respective basic operations and basic relations in $  \mathbf A $,  
 +
then one obtains a definite statement which may be true or false. One accordingly assigns to the formula $  \mathfrak F $
 +
the value $  T $
 +
or $  F $,  
 +
for $  x _{1} = a _{1} \dots x _{k} = a _{k} $
 +
denoted by $  \mathfrak F (a _{1} \dots a _{k} ) $.  
 +
If $  \phi $
 +
is an isomorphic mapping of an $  \Omega $-
 +
system $  \mathbf A $
 +
into an $  \Omega $-
 +
system $  \mathbf A^ \prime  $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650328.png" /></td> </tr></table>
+
$$
 +
\mathfrak F ( a _{1} \dots a _{k} ) \  = \  \mathfrak F ( \phi
 +
( a _{1} ) \dots \phi ( a _{k} ) ),
 +
$$
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650329.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650330.png" />.
+
for all a _{1} \dots a _{k} $
 +
from $  A $.
  
A formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650331.png" /> is called closed if it contains no free object variables. For any closed formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650332.png" /> of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650333.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650334.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650335.png" /> one may speak of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650336.png" /> being true or false in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650337.png" />. A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650338.png" /> of closed formulas of a given signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650339.png" /> is said to be realizable or consistent if there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650340.png" />-system in which all formulas from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650341.png" /> are true.
+
A formula $  \mathfrak F $
 +
is called closed if it contains no free object variables. For any closed formula $  \mathfrak F $
 +
of the signature $  \Omega $
 +
and any $  \Omega $-
 +
system $  \mathbf A $
 +
one may speak of $  \mathfrak F $
 +
being true or false in $  \mathbf A $.  
 +
A set $  S $
 +
of closed formulas of a given signature $  \Omega $
 +
is said to be realizable or consistent if there exists an $  \Omega $-
 +
system in which all formulas from $  S $
 +
are true.
  
The compactness theorem or the Gödel–Mal'tsev theorem states: If each finite subset of an infinite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650342.png" /> of closed formulas of a given signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650343.png" /> is realizable, then the entire set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650344.png" /> is realizable as well.
+
The compactness theorem or the Gödel–Mal'tsev theorem states: If each finite subset of an infinite set $  S $
 +
of closed formulas of a given signature $  \Omega $
 +
is realizable, then the entire set $  S $
 +
is realizable as well.
  
 
==Axiomatizable classes.==
 
==Axiomatizable classes.==
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650345.png" /> be some set of closed formulas of a signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650346.png" />. The class of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650347.png" />-systems in which all formulas of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650348.png" /> are true will be denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650349.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650350.png" /> of all closed formulas of a signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650351.png" /> which are true in all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650352.png" />-systems of the given class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650353.png" />, is called the elementary theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650354.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650355.png" /> is the class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650356.png" />-systems isomorphic to the given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650357.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650358.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650359.png" /> is said to be the elementary theory of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650360.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650361.png" /> and is simply denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650362.png" />. A class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650363.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650364.png" />-systems is said to be axiomatizable if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650366.png" />. A class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650367.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650368.png" />-systems is axiomatizable if and only if there exists a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650369.png" /> of closed formulas of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650370.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650371.png" />.
+
Let $  S $
 +
be some set of closed formulas of a signature $  \Omega $.  
 +
The class of all $  \Omega $-
 +
systems in which all formulas of $  S $
 +
are true will be denoted by $  KS $.  
 +
The set $  \mathop{\rm Th}\nolimits \  \mathfrak K $
 +
of all closed formulas of a signature $  \Omega $
 +
which are true in all $  \Omega $-
 +
systems of the given class $  \mathfrak K $,  
 +
is called the elementary theory of $  \mathfrak K $.  
 +
In particular, if $  ( \mathbf A ) $
 +
is the class of $  \Omega $-
 +
systems isomorphic to the given $  \Omega $-
 +
system $  \mathbf A $,  
 +
then $  \mathop{\rm Th}\nolimits \  ( \mathbf A ) $
 +
is said to be the elementary theory of the $  \Omega $-
 +
system $  \mathbf A $
 +
and is simply denoted by $  \mathop{\rm Th}\nolimits \  \mathbf A $.  
 +
A class $  \mathfrak K $
 +
of $  \Omega $-
 +
systems is said to be axiomatizable if $  \mathfrak K = K \  \mathop{\rm Th}\nolimits \  \mathfrak K $.  
 +
A class $  \mathfrak K $
 +
of $  \Omega $-
 +
systems is axiomatizable if and only if there exists a set $  S $
 +
of closed formulas of the signature $  \Omega $
 +
such that $  \mathfrak K = KS $.
  
 
Along with the general concept of axiomatizability, axiomatizability using first-order formulas of a special kind may also be considered. The special formulas of a given signature which are the most important in algebra are:
 
Along with the general concept of axiomatizability, axiomatizability using first-order formulas of a special kind may also be considered. The special formulas of a given signature which are the most important in algebra are:
Line 102: Line 479:
 
Identities — the formulas
 
Identities — the formulas
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650372.png" /></td> </tr></table>
+
$$
 +
( \forall x _{1} ) \dots (\forall x _{s} ) P ( f _{1} \dots f _{m} ) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650373.png" /> is some predicate symbol from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650374.png" /> or the equality sign <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650375.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650376.png" /> are terms of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650377.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650378.png" />.
+
where $  P $
 +
is some predicate symbol from $  \Omega $
 +
or the equality sign = $,  
 +
and $  f _{1} \dots f _{m} $
 +
are terms of the signature $  \Omega $
 +
in $  x _{1} \dots x _{s} $.
  
 
Quasi-identities — the formulas
 
Quasi-identities — the formulas
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650379.png" /></td> </tr></table>
+
$$
 +
( \forall x _{1} ) \dots ( \forall x _{s} ) [ P
 +
( f _{1} \dots f _{k} ) \& \dots \& Q ( g _{1} \dots g _{m} )\  \rightarrow
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650380.png" /></td> </tr></table>
+
$$
 +
\rightarrow \
 +
{} R ( h _{1} \dots h _{n} ) ] ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650381.png" /> are certain predicate symbols from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650382.png" /> or equality signs, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650383.png" /> are terms of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650384.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650385.png" />.
+
where $  P \dots Q,\  R $
 +
are certain predicate symbols from $  \Omega _{p} $
 +
or equality signs, while $  f _{1} \dots f _{k} ,\  g _{1} \dots g _{m} ,\  h _{1} \dots h _{n} $
 +
are terms of the signature $  \Omega $
 +
in $  x _{1} \dots x _{s} $.
  
Universal formulas — the formulas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650386.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650387.png" /> is a formula of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650388.png" /> not containing quantifiers.
+
Universal formulas — the formulas $  ( \forall x _{1} ) \dots ( \forall x _{s} ) \mathfrak F $,  
 +
where $  \mathfrak F $
 +
is a formula of the signature $  \Omega $
 +
not containing quantifiers.
  
If a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650389.png" /> of identities (quasi-identities or universal formulas) of a signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650390.png" /> is given, then the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650391.png" /> is known as a variety (quasi-variety or universal class) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650395.png" />-systems.
+
If a set $  S $
 +
of identities (quasi-identities or universal formulas) of a signature $  \Omega $
 +
is given, then the class $  KS $
 +
is known as a variety (quasi-variety or universal class) of $  \Omega $-
 +
systems.
  
Birkhoff's theorem: A non-empty class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650396.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650397.png" />-systems is a variety if and only if it is closed with respect to subsystems, Cartesian products and homomorphic images.
+
Birkhoff's theorem: A non-empty class $  \mathfrak K $
 +
of $  \Omega $-
 +
systems is a variety if and only if it is closed with respect to subsystems, Cartesian products and homomorphic images.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650398.png" /> is some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650399.png" />-system, then, by exchanging each function symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650400.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650401.png" /> for a predicate symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650402.png" /> of arity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650403.png" /> (higher by one) and putting, for elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650404.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650405.png" />
+
If $  \mathbf A = \langle  A,\  \Omega \rangle $
 +
is some $  \Omega $-
 +
system, then, by exchanging each function symbol $  F _{i} $
 +
from $  \Omega _{f} $
 +
for a predicate symbol $  F _ i^{*} $
 +
of arity $  n _{i} + 1 $(
 +
higher by one) and putting, for elements $  a _{1} \dots a _{ {n _ i}} ,\  a $
 +
from $  A $
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650406.png" /></td> </tr></table>
+
$$
 +
F _ i^{*} ( a _{1} \dots a _{ {n _ i}} ,\  a ) \  \iff \
 +
F _{i} ( a _{1} \dots a _{ {n _ i}} ) \  = a ,
 +
$$
  
one obtains a model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650407.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650408.png" />. Submodels of the model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650409.png" /> are called submodels of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650410.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650411.png" />. For any non-empty finite subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650412.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650413.png" />, the model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650414.png" /> is called a finite depletion of the finite submodel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650415.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650416.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650417.png" />. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650418.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650419.png" /> is said to be locally imbeddable in a class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650421.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650422.png" />-systems if for each finite depletion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650423.png" /> of any finite submodel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650424.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650425.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650426.png" /> there exists in the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650427.png" /> an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650428.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650429.png" /> (depending on the chosen finite depletion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650430.png" />) such that the model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650431.png" /> is isomorphic to the model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650432.png" /> for a suitable subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650433.png" />.
+
one obtains a model $  \mathbf A^{*} = \langle  A,\  \Omega^{*} \rangle $
 +
for which $  \Omega _ p^{*} = \Omega _{p} \cup \{ {F _{i} ^ *} : {F _{i} \in \Omega _ f} \} $.  
 +
Submodels of the model $  \mathbf A^{*} $
 +
are called submodels of the $  \Omega $-
 +
system $  \mathbf A $.  
 +
For any non-empty finite subsets $  A _ \alpha  \subseteq A $,  
 +
$  \Omega _ \beta^{*} \subseteq \Omega^{*} $,  
 +
the model $  \mathbf A _{ {\alpha \beta}} = \langle  A _ \alpha  ,\  \Omega _ \beta^{*} \rangle $
 +
is called a finite depletion of the finite submodel $  \mathbf A _ \alpha  = \langle  A _ \alpha  ,\  \Omega^{*} \rangle $
 +
of the $  \Omega $-
 +
system $  \mathbf A $.  
 +
An $  \Omega $-
 +
system $  \mathbf A $
 +
is said to be locally imbeddable in a class $  \mathfrak K $
 +
of $  \Omega $-
 +
systems if for each finite depletion $  \mathbf A _{ {\alpha \beta}} $
 +
of any finite submodel $  \mathbf A _ \alpha  $
 +
of the $  \Omega $-
 +
system $  \mathbf A $
 +
there exists in the class $  \mathfrak K $
 +
an $  \Omega $-
 +
system $  \mathbf B $(
 +
depending on the chosen finite depletion $  \mathbf A _{ {\alpha \beta}} $)  
 +
such that the model $  \mathbf A _{ {\alpha \beta}} = \langle  A _ \alpha  ,\  \Omega _ \beta^{*} \rangle $
 +
is isomorphic to the model $  \mathbf B _{ {\alpha \beta}} = \langle  B _ \alpha  ,\  \Omega _ \beta^{*} \rangle $
 +
for a suitable subset $  B _ \alpha  \subseteq B $.
  
A subclass <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650434.png" /> of a class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650435.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650436.png" />-systems is called universal (or universally axiomatizable) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650439.png" /> if there exists a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650440.png" /> of universal formulas of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650441.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650442.png" />.
+
A subclass $  \mathfrak L $
 +
of a class $  \mathfrak K $
 +
of $  \Omega $-
 +
systems is called universal (or universally axiomatizable) in $  \mathfrak K $
 +
if there exists a set $  S $
 +
of universal formulas of the signature $  \Omega $
 +
such that $  \mathfrak L = KS \cap \mathfrak K $.
  
The Tarski–Los theorem: A subclass <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650443.png" /> of a class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650444.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650445.png" />-systems is universal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650446.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650447.png" /> contains all systems from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650448.png" /> which are locally imbeddable in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650449.png" />.
+
The Tarski–Los theorem: A subclass $  \mathfrak L $
 +
of a class $  \mathfrak K $
 +
of $  \Omega $-
 +
systems is universal in $  \mathfrak K $
 +
if and only if $  \mathfrak L $
 +
contains all systems from $  \mathfrak K $
 +
which are locally imbeddable in $  \mathfrak L $.
  
 
==Filtered products.==
 
==Filtered products.==
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650450.png" /> be the Cartesian product of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650451.png" />-systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650452.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650453.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650454.png" />) and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650455.png" /> be some [[Filter|filter]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650456.png" />. The relation
+
Let $  \mathbf D = \prod \mathbf A _ \alpha  $
 +
be the Cartesian product of the $  \Omega $-
 +
systems $  \mathbf A _ \alpha  $(
 +
$  \alpha \in \Lambda $,  
 +
$  \Lambda \neq \emptyset $)  
 +
and let $  \Phi $
 +
be some [[Filter|filter]] over $  \Lambda $.  
 +
The relation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650457.png" /></td> </tr></table>
+
$$
 +
d \equiv {} _ \Phi  h \  \iff \  \{ {\alpha \in \Lambda} : {d ( \alpha ) =
 +
h ( \alpha )} \}
 +
\in \Phi \ \  ( d ,\  h \in D )
 +
$$
  
is an equivalence relation on the underlying set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650458.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650459.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650460.png" />. For each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650461.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650462.png" /> be the coset by this equivalence and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650463.png" />. Putting
+
is an equivalence relation on the underlying set $  D $
 +
of the $  \Omega $-
 +
system $  \mathbf D $.  
 +
For each element $  d \in D $,  
 +
let $  d / \Phi $
 +
be the coset by this equivalence and let $  D / \Phi = \{ {d / \Phi} : {d \in D} \} $.  
 +
Putting
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650464.png" /></td> </tr></table>
+
$$
 +
F _{i} ( d _{1} / \Phi \dots d _{ {n _ i}} / \Phi ) \  = \
 +
d \Phi\  \iff
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650465.png" /></td> </tr></table>
+
$$
 +
\iff \
 +
\{ \alpha : \  F _{i} ( d _{1} ( \alpha ) \dots d
 +
_{ {n _ i}} ( \alpha ) ) = d ( \alpha )
 +
\} \  \in \  \Phi \ \  ( F _{i} \in \Omega _{f} ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650466.png" /></td> </tr></table>
+
$$
 +
P _{j} ( d _{1} / \Phi \dots d _{ {m _ j}} / \Phi )\  \iff
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650467.png" /></td> </tr></table>
+
$$
 +
\iff \
 +
\{ \alpha : \  P _{j} ( d _{1} ( \alpha ) \dots d
 +
_{ {m _ j}} ( \alpha ) ) \} \  \in \  \Phi \ \  ( P _{j} \in \Omega _{p} ) ,
 +
$$
  
one obtains the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650468.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650469.png" />, which is called the product of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650471.png" />-systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650472.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650473.png" />) filtered through the filter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650475.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650476.png" />-systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650477.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650478.png" />) are said to be the factors of this product. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650479.png" /> is an [[Ultrafilter|ultrafilter]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650480.png" />, the filtered product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650481.png" /> is known as the ultraproduct of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650482.png" />-systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650483.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650484.png" />).
+
one obtains the $  \Omega $-
 +
system $  \mathbf D / \Phi = \langle  D / \Phi ,\  \Omega \rangle $,  
 +
which is called the product of the $  \Omega $-
 +
systems $  \mathbf A _ \alpha  $(
 +
$  \alpha \in \Lambda $)  
 +
filtered through the filter $  \Phi $.  
 +
The $  \Omega $-
 +
systems $  \mathbf A _ \alpha  $(
 +
$  \alpha \in \Lambda $)  
 +
are said to be the factors of this product. If $  \Phi $
 +
is an [[Ultrafilter|ultrafilter]] over $  \Lambda $,  
 +
the filtered product $  \mathbf D / \Phi $
 +
is known as the ultraproduct of the $  \Omega $-
 +
systems $  \mathbf A _ \alpha  $(
 +
$  \alpha \in \Lambda $).
  
The ultraproduct theorem: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650485.png" /> is the ultraproduct of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650486.png" />-systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650487.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650488.png" />) and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650489.png" /> is an arbitrary formula of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650490.png" /> in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650491.png" /> are free object variables, then for any elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650492.png" />:
+
The ultraproduct theorem: If $  \mathbf D / \Phi $
 +
is the ultraproduct of the $  \Omega $-
 +
systems $  \mathbf A _ \alpha  $(
 +
$  \alpha \in \Lambda $)  
 +
and if $  \mathfrak F ( x _{1} \dots x _{k} ) $
 +
is an arbitrary formula of the signature $  \Omega $
 +
in which $  x _{1} \dots x _{k} $
 +
are free object variables, then for any elements $  d _{1} \dots d _{k} \in D $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650493.png" /></td> </tr></table>
+
$$
 +
\mathfrak F ( d _{1} / \Phi \dots d _{k} / \Phi ) \  = \  T\  \iff
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650494.png" /></td> </tr></table>
+
$$
 +
\iff \
 +
\{ \alpha : \  \mathfrak F ( d _{1} ( \alpha ) \dots d _{k} ( \alpha ) ) = T \} \  \in \  \Phi .
 +
$$
  
In particular, a closed formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650495.png" /> of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650496.png" /> is true in the ultraproduct <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650497.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650498.png" />-systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650499.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650500.png" />) if and only if the set of numbers of factors in which the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650501.png" /> is true belongs to the ultrafilter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650502.png" />. Therefore, any axiomatizable class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650503.png" />-systems is closed with respect to ultraproducts.
+
In particular, a closed formula $  \mathfrak F $
 +
of the signature $  \Omega $
 +
is true in the ultraproduct $  \mathbf D / \Phi $
 +
of the $  \Omega $-
 +
systems $  \mathbf A _ \alpha  $(
 +
$  \alpha \in \Lambda $)  
 +
if and only if the set of numbers of factors in which the formula $  \mathfrak F $
 +
is true belongs to the ultrafilter $  \Phi $.  
 +
Therefore, any axiomatizable class of $  \Omega $-
 +
systems is closed with respect to ultraproducts.
  
A class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650504.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650505.png" />-systems is universally axiomatizable if and only if it is closed with respect to subsystems and ultraproducts.
+
A class $  L $
 +
of $  \Omega $-
 +
systems is universally axiomatizable if and only if it is closed with respect to subsystems and ultraproducts.
  
An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650506.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650507.png" /> is said to be a unit if its underlying set consists of a single element, e.g. an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650509.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650510.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650511.png" />.
+
An $  \Omega $-
 +
system $  \mathbf E = \langle  \{ e \} ,\  \Omega \rangle $
 +
is said to be a unit if its underlying set consists of a single element, e.g. an element $  e $,  
 +
and if $  P _{j} ( e \dots e ) = T $
 +
for all $  P _{j} \in \Omega _{p} $.
  
Mal'tsev's theorem: A class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650512.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650513.png" />-systems is a quasi-variety if and only if it contains a unit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650514.png" />-system and is closed with respect to subsystems and filtered products (through an arbitrary filter).
+
Mal'tsev's theorem: A class $  \mathfrak K $
 +
of $  \Omega $-
 +
systems is a quasi-variety if and only if it contains a unit $  \Omega $-
 +
system and is closed with respect to subsystems and filtered products (through an arbitrary filter).
  
 
==Completeness and categoricity.==
 
==Completeness and categoricity.==
A non-empty class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650515.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650516.png" />-systems is called categorical if all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650518.png" />-systems from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650519.png" /> are mutually isomorphic. Any categorical axiomatizable class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650520.png" />-systems consists of one (up to an isomorphism) finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650521.png" />-system.
+
A non-empty class $  \mathfrak K $
 +
of $  \Omega $-
 +
systems is called categorical if all $  \Omega $-
 +
systems from $  \mathfrak K $
 +
are mutually isomorphic. Any categorical axiomatizable class of $  \Omega $-
 +
systems consists of one (up to an isomorphism) finite $  \Omega $-
 +
system.
  
A class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650522.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650523.png" />-systems is called categorical in cardinality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650524.png" /> if it contains an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650525.png" />-system of cardinality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650526.png" /> and if all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650527.png" />-systems from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650528.png" /> of cardinality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650529.png" /> are mutually isomorphic. For example, the class of algebraically closed fields of fixed characteristic is categorical in any uncountable infinite cardinality. A non-empty class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650530.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650531.png" />-systems is called complete if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650533.png" />-systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650534.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650535.png" /> the equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650536.png" /> is valid.
+
A class $  \mathfrak K $
 +
of $  \Omega $-
 +
systems is called categorical in cardinality $  \mathfrak m $
 +
if it contains an $  \Omega $-
 +
system of cardinality $  \mathfrak m $
 +
and if all $  \Omega $-
 +
systems from $  \mathfrak K $
 +
of cardinality $  \mathfrak m $
 +
are mutually isomorphic. For example, the class of algebraically closed fields of fixed characteristic is categorical in any uncountable infinite cardinality. A non-empty class $  \mathfrak K $
 +
of $  \Omega $-
 +
systems is called complete if for any $  \Omega $-
 +
systems $  \mathbf A ,\  \mathbf B $
 +
from $  \mathfrak K $
 +
the equality $  \mathop{\rm Th}\nolimits \  \mathbf A = \mathop{\rm Th}\nolimits \  \mathbf B $
 +
is valid.
  
Vaught's theorem. If an axiomatizable class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650537.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650538.png" />-systems is categorical in some cardinality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650539.png" /> and if all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650540.png" />-systems in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650541.png" /> are infinite, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650542.png" /> is a complete class.
+
Vaught's theorem. If an axiomatizable class $  \mathfrak K $
 +
of $  \Omega $-
 +
systems is categorical in some cardinality $  \mathfrak m \geq | \Omega _{f} \cup \Omega _{p} | $
 +
and if all $  \Omega $-
 +
systems in $  \mathfrak K $
 +
are infinite, then $  \mathfrak K $
 +
is a complete class.
  
 
In particular, the class of all algebraically closed fields of fixed characteristic is complete.
 
In particular, the class of all algebraically closed fields of fixed characteristic is complete.
Line 174: Line 725:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Mal'tsev,  "Algebraic systems" , Springer  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.M. Cohn,  "Universal algebra" , Reidel  (1981)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G. Grätzer,  "Universal algebra" , Springer  (1979)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  J.L. Bell,  A.B. Slomson,  "Models and ultraproducts: an introduction" , North-Holland  (1971)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  C.C. Chang,  H.J. Keisler,  "Model theory" , North-Holland  (1973)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Mal'tsev,  "Algebraic systems" , Springer  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.M. Cohn,  "Universal algebra" , Reidel  (1981)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G. Grätzer,  "Universal algebra" , Springer  (1979)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  J.L. Bell,  A.B. Slomson,  "Models and ultraproducts: an introduction" , North-Holland  (1971)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  C.C. Chang,  H.J. Keisler,  "Model theory" , North-Holland  (1973)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The terminology in use for this subject in English-speaking countries differs in a number of respects from the Russian terminology. What is here called an algebraic system is usually called a (first-order) structure (a structure of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650543.png" />, if a given signature or similarity type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650544.png" /> has been specified); the term algebra is often used instead of  "structure"  in the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650545.png" /> has no primitive relations. The term model is reserved for a structure which satisfies a given set of first-order sentences (closed formulas); it is not normally used in the sense defined above. The underlying set of a structure is sometimes called its universe.
+
The terminology in use for this subject in English-speaking countries differs in a number of respects from the Russian terminology. What is here called an algebraic system is usually called a (first-order) structure (a structure of type $  \Omega $,  
 +
if a given signature or similarity type $  \Omega $
 +
has been specified); the term algebra is often used instead of  "structure"  in the case when $  \Omega $
 +
has no primitive relations. The term model is reserved for a structure which satisfies a given set of first-order sentences (closed formulas); it is not normally used in the sense defined above. The underlying set of a structure is sometimes called its universe.
  
 
Although the text is correct in saying that the subject was largely developed in the 1950s (principally through work of L.A. Henkin [L.A. Khenkin], A.I. Mal'tsev, A. Robinson and A. Tarski), two important precursors dating from 1935 should be mentioned. They are Birkhoff's theorem characterizing varieties of algebras [[#References|[a1]]] and Tarski's definition of validity of formulas in a first-order structure [[#References|[a2]]].
 
Although the text is correct in saying that the subject was largely developed in the 1950s (principally through work of L.A. Henkin [L.A. Khenkin], A.I. Mal'tsev, A. Robinson and A. Tarski), two important precursors dating from 1935 should be mentioned. They are Birkhoff's theorem characterizing varieties of algebras [[#References|[a1]]] and Tarski's definition of validity of formulas in a first-order structure [[#References|[a2]]].

Latest revision as of 18:22, 30 January 2020


A set with operations and relations defined on it. An algebraic system is one of the basic mathematical concepts and its general theory has been developed in depth. This was done in the 1950s, and the work took place on the interface between algebra and mathematical logic.

Fundamental concepts.

An algebraic system is an object $ \mathbf A = \langle A,\ O,\ R \rangle $ consisting of a non-empty set $ A $, a family $ O $ of algebraic operations (cf. Algebraic operation) $ o _{i} : \ A ^ {n _ i} \rightarrow A $( $ i \in I $) and a family $ R $ of relations (cf. Relation) $ r _{j} \subseteq A ^ {m _ j} $( $ j \in J $) defined on $ A $. The indices $ n _{i} ,\ m _{j} $ of the Cartesian powers of $ A $ under consideration are assumed to be non-negative integers and are said to be the arities of the respective operations and relations. The set $ A $ is called the carrier or the underlying set of the algebraic system $ \mathbf A $, while its elements are called the elements of this system. The cardinality $ | A | $ of $ A $ is said to be the cardinality or order of the algebraic system $ \mathbf A $. The image $ o _{i} (a _{1} \dots a _{ {n _ i}} ) $ of the element $ (a _{1} \dots a _{ {n _ i}} ) \in A ^ {n _ i} $ under the mapping $ o _{i} : \ A ^ {n _ i} \rightarrow A $ is called the value of the operation $ o _{i} $ at the point $ ( a _{1} \dots a _{ {n _ i}} ) $. Similarly, if $ (a _{1} \dots a _{ {m _ j}} ) \in r _{j} $, then one says that the elements $ a _{1} \dots a _{ {m _ j}} $ of $ A $ are in relation $ r _{j} $, and one writes $ r _{j} ( a _{1} \dots a _{ {m _ j}} ) $. The operations $ o _{i} $( $ i \in I $) and the relations $ r _{j} $( $ j \in J $), unlike other operations and relations that may be defined on $ A $, are called basic or primitive.

The pair of families $ \langle \{ {n _ i} : {i \in I} \} ; \ \{ {m _ j} : {j \in J} \} \rangle $ is called the type of the algebraic system $ \mathbf A $. Two algebraic systems $ \mathbf A ,\ \mathbf A^ \prime $ have the same type if $ I = I^ \prime $, $ J = J^ \prime $ and $ n _{i} = n _ i^ \prime $, $ m _{j} = m _ j^ \prime $ for all $ i \in I $, $ j \in J $. Basic operations $ o _{i} $, $ o _ i^ \prime $ and basic relations $ r _{j} $, $ r _ j^ \prime $ of two algebraic systems $ \mathbf A $, $ \mathbf A^ \prime $ of the same type, with identical indices in $ I $, $ J $ respectively, are called similar.

An algebraic system $ \mathbf A $ is called finite if the set $ A $ is finite and it is called of finite type if the set $ I \cup J $ is finite. An algebraic system $ \mathbf A $ of finite type is written as $ A = \langle A; \ o _{1} \dots o _{s} ,\ r _{1} \dots r _{t} \rangle $.

An algebraic system $ \mathbf A = \langle A,\ O,\ R\rangle $ is called a universal algebra or an algebra if the set $ R $ of its basic relations is empty, and it is called a model (in logic) or a relational system if the set $ O $ of basic operations is empty. Classical algebraic systems are groups, rings, linear spaces, linear algebras, totally ordered sets, totally ordered groups, lattices, etc.

A non-empty subset $ B $ of the underlying set $ A $ of an algebraic system $ \mathbf A = \langle A,\ O,\ R \rangle $ is called closed if for any elements $ b _{1} \dots b _{ {n _ i}} $ of $ B $ the value $ o _{i} (b _{1} \dots b _{ {n _ i}} ) $ of each basic operation $ o _{i} \in O $ also belongs to $ B $. By considering the operations of $ O $ and the relations of $ R $ on a closed subset $ B $, one obtains an algebraic system $ \mathbf B = \langle B ,\ O^ \prime ,\ R^ \prime \rangle $ which is of the same type as the given algebraic system and is called a subsystem of the algebraic system $ \mathbf A $. Subsystems of algebras are called subalgebras, while subsystems of models are called submodels. The concept of a subalgebra strongly depends on the set of basic operations of the algebra under consideration. Thus, a groupoid $ \mathbf G $ is an algebra of type $ \langle 2\rangle $, i.e. an algebra with one basic operation $ G \times G \rightarrow G $. A groupoid $ \mathbf H $ with a distinguished unit $ e $ is an algebra of type $ \langle 2,\ 0\rangle $, the distinguished element of which has the property $ o(e,\ h) = o(h,\ e) = h $ for all $ h \in H $ with respect to the basic operation $ o : \ H \times H \rightarrow H $. For this reason any subgroupoid of a groupoid $ \mathbf H $ with a distinguished unit $ e $ contains $ e $, while a subgroupoid of a groupoid $ \langle H,\ o \rangle $ does not necessarily contain $ e $. Unlike algebras, any non-empty subset of a model may be considered as a submodel.

An algebraic system $ \mathbf A $ is isomorphic to an algebraic system $ \mathbf A^ \prime $ of the same type if there exists a one-to-one mapping $ \phi $ of the set $ A $ into the set $ A^ \prime $ such that

$$ \tag{1} \phi ( o _ i^ \prime ( a _{1} \dots a _{ {n _ i}} ) ) \ = \ o _ i^ \prime ( \phi ( a _{1} ) \dots \phi ( a _{ {n _ i}} ) ) , $$

$$ \tag{2} r _{j} ( a _{1} \dots a _{ {m _ j}} ) \ \iff \ r _ j^ \prime ( \phi ( a _{1} ) \dots \phi ( a _{ {m _ j}} ) ), $$

holds for all $ a _{1} ,\ a _{2} \dots $ of $ A $ and for all $ i \in I $, $ j \in J $. A mapping $ \phi $ possessing these properties is called an isomorphism.

In the following, a class of algebraic systems will be understood to mean only an abstract class, i.e. a class of algebraic systems of the same type which, whenever it contains a system $ \mathbf A $, also contains all systems isomorphic to $ \mathbf A $. In considering a class $ \mathfrak K $ of algebraic systems, all systems in this class are usually written in a definite signature, as follows. Let the type of the class $ \mathfrak K $ be $ \langle \{ {n _ i} : {i \in I} \} ; \ \{ {m _ j} : {j \in J} \} \rangle $. To each $ i \in I $ is assigned some symbol $ F _{i} $, called a functional, while to each $ j \in J $ is assigned a symbol $ P _{j} $, called a predicate. If an algebraic system $ \mathbf A $ belongs to the class $ \mathfrak K $ and if $ o _{i} : \ A^{n} _{i} \rightarrow A $ is a basic operation in it, then the element $ o _{i} ( a _{1} \dots a _{ {n _ i}} ) $ of $ A $ is written as $ F _{i} ( a _{1} \dots a _{ {n _ i}} ) $. Similarly, if $ r _{j} \subseteq A^{m} _{j} $ is a basic relation in $ A $ and the element $ ( a _{1} \dots a _{ {m _ j}} ) \in r _{j} $, then one writes $ P _{j} ( a _{1} \dots a _{ {m _ j}} ) = T $( true) or simply $ P _{j} ( a _{1} \dots a _{ {m _ j}} ) $. If, on the other hand, $ ( a _{1} \dots a _{ {m _ j}} ) \notin r _{j} $, one writes $ P _{j} ( a _{1} \dots a _{ {m _ j}} ) = F $( false) or $ \neg P _{j} ( a _{1} \dots a _{ {m _ j}} ) $. Let $ \Omega _{f} = \{ {F _ j} : {i \in I} \} $, $ \Omega _{p} = \{ {P _ j} : {j \in J} \} $ and let $ \nu $ be the mapping of the union $ \Omega _{f} \cup \Omega _{p} $ into the set of natural numbers $ \{ 0,\ 1,\ 2 ,\dots \} $, defined by the formulas $ \nu ( F _{i} ) = n _{i} $( $ i \in I $), $ \nu (P _{j} ) = m _{j} $( $ j \in J $). The object $ \Omega = \langle \Omega _{f} ,\ \Omega _{p} ,\ \nu \rangle $ is the signature of the class $ \mathfrak K $. A finite signature is written as a string $ \langle F _{1} ^ {( n _{1} )} \dots F _{s} ^ {(n _{s} )} ; \ P _{1} ^ {( m _{1} )} \dots P _{t} ^ {( m _{t} )} \rangle $ or, more briefly, $ \langle F _{1} \dots F _{s} ; \ P _{1} \dots P _{t} \rangle $. An algebraic system $ \mathbf A $, written in the signature $ \Omega $, is known as an $ \Omega $- system and is denoted by $ \mathbf A = \langle A,\ \Omega \rangle $.

The conditions (1) and (2) for an isomorphism of the systems $ \mathbf A $ and $ \mathbf A^ \prime $ become simplified if the systems are considered in one signature $ \Omega $. Thus, if $ F _{i} $( $ i \in I $) and $ P _{j} $( $ j \in J $) are the signature symbols, equations (1) and (2) assume the form

$$ \tag{3} \phi ( F _{i} ( a _{1} \dots a _{ {n _ i}} ) ) \ = \ F _{i} ( \phi ( a _{1} ) \dots \phi ( a _{ {n _ i}} ) ) , $$

$$ \tag{4} P _{j} ( a _{1} \dots a _{ {m _ j}} ) \ \iff \ P _{j} ( \phi ( a _{1} ) \dots \phi ( a _{ {m _ j}} ) ) . $$

A homomorphism of an $ \Omega $- system $ \mathbf A $ into an $ \Omega $- system $ \mathbf A^ \prime $ is any mapping $ \phi : \ A \rightarrow A^ \prime $ which fulfills both condition (3) and the condition

$$ \tag{5} P _{j} ( a _{1} \dots a _{ {m _ j}} ) \ \Rightarrow \ P _{j} ( \phi ( a _{1} ) \dots \phi ( a _{ {m _ j}} ) ) $$

for all $ F _{i} \in \Omega _{f} ,\ P _{j} \in \Omega _{p} $ and for all $ a _{1} ,\ a _{2} \dots $ of $ A $. A homomorphism $ \phi : \ \mathbf A \rightarrow \mathbf A^ \prime $ is called strong if, for any elements $ b _{1} \dots b _{ {m _ j}} $ of $ A^ \prime $ and for any predicate symbol $ P _{j} $ of $ \Omega _{p} $, the relation $ P _{j} (b _{1} \dots b _{ {m _ j}} ) = T $ implies the existence in $ A $ of pre-images $ a _{1} \dots a _{ {m _ j}} $ of the elements $ b _{1} \dots b _{ {m _ j}} $ such that $ P _{j} (a _{1} \dots a _{ {m _ j}} ) = T $. The concepts of a homomorphism and of a strong homomorphism of algebras are identical. Models have homomorphisms that are not strong, and have one-to-one homomorphisms that are not isomorphisms. Under a homomorphism $ \phi : \ \mathbf A \rightarrow \mathbf A^ \prime $, images of subsystems of $ \mathbf A $ are subsystems in $ \mathbf A^ \prime $; and non-empty complete pre-images of subsystems of $ \mathbf A^ \prime $ are subsystems in $ \mathbf A $.

An equivalence relation $ \theta \subseteq A \times A $ is called a congruence of the $ \Omega $- system $ \mathbf A $ if

$$ \theta ( a _{1} ,\ b _{1} ) \dots \theta ( a _{ {n _ i}} , \ b _{ {n _ i}} )\ \Rightarrow $$

$$ \Rightarrow \ \theta ( F _{i} ( a _{1} \dots a _{ {n _ i}} ) ,\ F _{i} ( b _{1} \dots b _{ {n _ i}} ) ) $$

for all $ a _{1} ,\ b _{1} \dots a _{ {n _ i}} ,\ b _{ {n _ i}} $ of $ A $ and all $ F _{i} \in \Omega _{f} $. For each homomorphism $ \phi $ of an algebraic system $ \mathbf A $ the binary relation $ \theta (a,\ b) $ which holds if and only if $ \phi (a) = \phi (b) $ is a congruence in $ \mathbf A $, called its kernel congruence. For any congruence $ \theta $ of an $ \Omega $- system $ \mathbf A $ and for each element $ a \in A $ the set $ a / \theta = \{ {x \in A} : {\theta (x,\ a)} \} $ is called a coset of the algebraic system $ \mathbf A $ by the congruence $ \theta $. On the assumption that, for each $ F _{i} \in \Omega _{f} $, $ P _{j} \in \Omega _{p} $,

$$ F _{i} ( a _{1} / \theta \dots a _{ {n _ i}} / \theta ) \ = \ F _{i} ( a _{1} \dots a _{ {n _ i}} ) / \theta $$

and

$$ P _{j} ( b _{1} / \theta \dots b _{ {m _ j}} / \theta ) \ = \ T $$

if and only if there exist elements $ c _{1} \dots c _{ {m _ j}} $ in $ A $ such that $ \theta (b _{1} ,\ c _{1} ) \dots \theta ( b _{ {m _ j}} ,\ c _{ {m _ j}} ) $ and $ P _{j} (c _{1} \dots c _{ {m _ j}} ) $, one obtains the algebraic system $ \mathbf A / \theta $, which is of the same type as the given system; it is called the quotient system of the algebraic system $ \mathbf A $ by the congruence $ \theta $. For each congruence $ \theta $ of an algebraic system $ \mathbf A $ the canonical mapping $ \phi (a) = a/ \theta $( $ a \in A $) is a homomorphism of $ \mathbf A $ onto the quotient system $ \mathbf A / \theta $ for which the given congruence $ \theta $ is the kernel congruence. If $ \phi $ is a homomorphism of an algebraic system $ \mathbf A $ into an algebraic system $ \mathbf A^ \prime $ and $ \theta $ is the kernel congruence for $ \phi $, then the mapping $ \psi ( a/ \theta ) = \phi (a) $ is a homomorphism of the quotient system $ \mathbf A / \theta $ into the algebraic system $ \mathbf A^ \prime $. If the homomorphism $ \phi $ is strong, $ \psi $ is an isomorphism.

The Cartesian product of $ \Omega $- systems $ \mathbf A _ \alpha = \langle A _ \alpha ,\ \Omega \rangle $, $ \alpha \in \Lambda \neq \emptyset $, is the $ \Omega $- system $ \mathbf D = \langle D,\ \Omega \rangle $ in which $ D $ is the Cartesian product of the underlying sets $ A _ \alpha $( $ \alpha \in \Lambda $) and the basic operations and the basic relations on $ D $ are given by the conditions: $ F _{i} ( d _{1} \dots d _{ {n _ i}} ) $( $ d _{1} \dots d _{ {n _ i}} \in D $, $ F _{i} \in \Lambda _{f} $) is the element $ d \in D $ with coordinates $ d ( \alpha ) = F _{i} ( d _{1} ( \alpha ) \dots d _{ {n _ i}} ( \alpha ) ) $( $ \alpha \in \Lambda $), $ P _{j} ( d _{1} \dots d _{ {m _ j}} ) = T $( $ P _{j} \in \Omega _{p} $) if and only if $ P _{j} ( d _{1} ( \alpha ) \dots d _{ {m _ j}} ( \alpha ) ) = T $ for all $ \alpha \in \Lambda $.

A language of the first order.

The basic formal language of the theory of algebraic systems is the first-order language $ L $ which is constructed as follows. The alphabet of the language $ L $ in the given signature $ \Omega = \langle \Omega _{f} ,\ \Omega _{p} ,\ \nu \rangle $, $ \Omega _{f} = \{ {F _ i} : {i \in I} \} $, $ \Omega _{p} = \{ {P _ j} : {j \in J} \} $, consists of the object variables $ x _{1} ,\ x _{2} \dots $ the function symbols $ F _{i} $( $ i \in I $), the predicate symbols $ P _{j} $( $ j \in J $), the logical connectives

$$ \& ,\ \ \lor ,\ \ \rightarrow ,\ \ \neg ,\ \ =, $$

the quantifiers:

$ \forall x _{k} $ — "for each element xk" ;

$ \exists x _{k} $ — "there exists an element xk" ;

and the auxiliary symbols: brackets and commas. The (first-order) properties of $ \Omega $- systems are expressed by finite sequences of alphabet symbols, or words, constructed in accordance with specific rules and known as terms and formulas. It is inductively assumed that each word of the form $ x _{k} $ or $ F _{i} $ is a term if $ \nu (F _{i} ) = 0 $; if $ f _{1} \dots f _{n} $ are terms and if $ n = \nu (F _{i} ) $, then $ F _{i} (f _{1} \dots f _{n} ) $ is also a term.

If $ \mathbf A $ is an $ \Omega $- system and if $ f (x _{1} \dots x _{n} ) $ is a term of the signature $ \Omega $ containing object variables $ x _{1} \dots x _{k} $, then if one replaces $ x _{1} \dots x _{k} $ by some elements $ a _{1} \dots a _{k} $ in $ A $, and executes the operations in $ \mathbf A $ on the latter elements corresponding to the symbols of $ \Omega _{f} $ forming part of this term, then one obtains an element $ f (a _{1} \dots a _{k} ) $ from $ A $, which is called the value of the term $ f (x _{1} \dots x _{k} ) $ for $ x _{1} = a _{1} \dots x _{k} = a _{k} $. If $ \phi $ is a homomorphism of an $ \Omega $- system $ \mathbf A $ into an $ \Omega $- system $ \mathbf A^ \prime $, then

$$ \phi ( f ( a _{1} \dots a _{k} ) ) \ = \ f ( \phi ( a _{1} ) \dots \phi ( a _{k} ) ) . $$

The concept of a formula of the signature $ \Omega $, and of free and bound object variables in it, is also defined inductively:

1) If $ P $ is any predicate symbol for $ \Omega $ or the equality sign $ = $, $ m = \nu (P) $ or 2 respectively, and if $ f _{1} \dots f _{m} $ are arbitrary terms of the signature $ \Omega $, then the word $ P( f _{1} \dots f _{m} ) $ is a formula in which all object variables are free.

2) If $ \mathfrak F $ is a formula, so is $ \neg \mathfrak F $. Free (bound) object variables in the formula $ \neg \mathfrak F $ are those and only those variables which are free (bound) in $ \mathfrak F $.

3) If $ \mathfrak F _{1} ,\ \mathfrak F _{2} $ are formulas and if the object variables which form part of both formulas are free in both formulas, then the words

$$ \tag{6} \mathfrak F _{1} \& \mathfrak F _{2} ,\ \ \mathfrak F _{1} \lor \mathfrak F _{2} ,\ \ \mathfrak F _{1} \rightarrow \mathfrak F _{2} , $$

are also formulas.

Object variables which are free (bound) in at least one of the formulas $ \mathfrak F _{1} $, $ \mathfrak F _{2} $ are called free (bound) in the formulas (6) as well.

4) If an object variable $ x _{k} $ occurs free in a formula $ \mathfrak F $, then the words $ ( \forall x _{k} ) \mathfrak F $, $ ( \exists x _{k} ) \mathfrak F $ are again formulas in which the variable $ x _{k} $ is bound, while all the other object variables which occur free or bound in the formula $ \mathfrak F $ remain free or bound in the formulas $ ( \forall x _{k} ) \mathfrak F $, $ ( \exists x _{k} ) \mathfrak F $ as well.

Let an $ \Omega $- system $ \mathbf A $ and a formula $ \mathfrak F $ of the signature $ \Omega $ be given. If one now assigns to all free object variables $ x _{1} \dots x _{k} $ from $ \mathfrak F $ some values $ a _{1} \dots a _{k} $ from $ A $ and if one interprets the function and the predicate symbols forming part of $ \mathfrak F $ as the respective basic operations and basic relations in $ \mathbf A $, then one obtains a definite statement which may be true or false. One accordingly assigns to the formula $ \mathfrak F $ the value $ T $ or $ F $, for $ x _{1} = a _{1} \dots x _{k} = a _{k} $ denoted by $ \mathfrak F (a _{1} \dots a _{k} ) $. If $ \phi $ is an isomorphic mapping of an $ \Omega $- system $ \mathbf A $ into an $ \Omega $- system $ \mathbf A^ \prime $, then

$$ \mathfrak F ( a _{1} \dots a _{k} ) \ = \ \mathfrak F ( \phi ( a _{1} ) \dots \phi ( a _{k} ) ), $$

for all $ a _{1} \dots a _{k} $ from $ A $.

A formula $ \mathfrak F $ is called closed if it contains no free object variables. For any closed formula $ \mathfrak F $ of the signature $ \Omega $ and any $ \Omega $- system $ \mathbf A $ one may speak of $ \mathfrak F $ being true or false in $ \mathbf A $. A set $ S $ of closed formulas of a given signature $ \Omega $ is said to be realizable or consistent if there exists an $ \Omega $- system in which all formulas from $ S $ are true.

The compactness theorem or the Gödel–Mal'tsev theorem states: If each finite subset of an infinite set $ S $ of closed formulas of a given signature $ \Omega $ is realizable, then the entire set $ S $ is realizable as well.

Axiomatizable classes.

Let $ S $ be some set of closed formulas of a signature $ \Omega $. The class of all $ \Omega $- systems in which all formulas of $ S $ are true will be denoted by $ KS $. The set $ \mathop{\rm Th}\nolimits \ \mathfrak K $ of all closed formulas of a signature $ \Omega $ which are true in all $ \Omega $- systems of the given class $ \mathfrak K $, is called the elementary theory of $ \mathfrak K $. In particular, if $ ( \mathbf A ) $ is the class of $ \Omega $- systems isomorphic to the given $ \Omega $- system $ \mathbf A $, then $ \mathop{\rm Th}\nolimits \ ( \mathbf A ) $ is said to be the elementary theory of the $ \Omega $- system $ \mathbf A $ and is simply denoted by $ \mathop{\rm Th}\nolimits \ \mathbf A $. A class $ \mathfrak K $ of $ \Omega $- systems is said to be axiomatizable if $ \mathfrak K = K \ \mathop{\rm Th}\nolimits \ \mathfrak K $. A class $ \mathfrak K $ of $ \Omega $- systems is axiomatizable if and only if there exists a set $ S $ of closed formulas of the signature $ \Omega $ such that $ \mathfrak K = KS $.

Along with the general concept of axiomatizability, axiomatizability using first-order formulas of a special kind may also be considered. The special formulas of a given signature which are the most important in algebra are:

Identities — the formulas

$$ ( \forall x _{1} ) \dots (\forall x _{s} ) P ( f _{1} \dots f _{m} ) , $$

where $ P $ is some predicate symbol from $ \Omega $ or the equality sign $ = $, and $ f _{1} \dots f _{m} $ are terms of the signature $ \Omega $ in $ x _{1} \dots x _{s} $.

Quasi-identities — the formulas

$$ ( \forall x _{1} ) \dots ( \forall x _{s} ) [ P ( f _{1} \dots f _{k} ) \& \dots \& Q ( g _{1} \dots g _{m} )\ \rightarrow $$

$$ \rightarrow \ {} R ( h _{1} \dots h _{n} ) ] , $$

where $ P \dots Q,\ R $ are certain predicate symbols from $ \Omega _{p} $ or equality signs, while $ f _{1} \dots f _{k} ,\ g _{1} \dots g _{m} ,\ h _{1} \dots h _{n} $ are terms of the signature $ \Omega $ in $ x _{1} \dots x _{s} $.

Universal formulas — the formulas $ ( \forall x _{1} ) \dots ( \forall x _{s} ) \mathfrak F $, where $ \mathfrak F $ is a formula of the signature $ \Omega $ not containing quantifiers.

If a set $ S $ of identities (quasi-identities or universal formulas) of a signature $ \Omega $ is given, then the class $ KS $ is known as a variety (quasi-variety or universal class) of $ \Omega $- systems.

Birkhoff's theorem: A non-empty class $ \mathfrak K $ of $ \Omega $- systems is a variety if and only if it is closed with respect to subsystems, Cartesian products and homomorphic images.

If $ \mathbf A = \langle A,\ \Omega \rangle $ is some $ \Omega $- system, then, by exchanging each function symbol $ F _{i} $ from $ \Omega _{f} $ for a predicate symbol $ F _ i^{*} $ of arity $ n _{i} + 1 $( higher by one) and putting, for elements $ a _{1} \dots a _{ {n _ i}} ,\ a $ from $ A $

$$ F _ i^{*} ( a _{1} \dots a _{ {n _ i}} ,\ a ) \ \iff \ F _{i} ( a _{1} \dots a _{ {n _ i}} ) \ = \ a , $$

one obtains a model $ \mathbf A^{*} = \langle A,\ \Omega^{*} \rangle $ for which $ \Omega _ p^{*} = \Omega _{p} \cup \{ {F _{i} ^ *} : {F _{i} \in \Omega _ f} \} $. Submodels of the model $ \mathbf A^{*} $ are called submodels of the $ \Omega $- system $ \mathbf A $. For any non-empty finite subsets $ A _ \alpha \subseteq A $, $ \Omega _ \beta^{*} \subseteq \Omega^{*} $, the model $ \mathbf A _{ {\alpha \beta}} = \langle A _ \alpha ,\ \Omega _ \beta^{*} \rangle $ is called a finite depletion of the finite submodel $ \mathbf A _ \alpha = \langle A _ \alpha ,\ \Omega^{*} \rangle $ of the $ \Omega $- system $ \mathbf A $. An $ \Omega $- system $ \mathbf A $ is said to be locally imbeddable in a class $ \mathfrak K $ of $ \Omega $- systems if for each finite depletion $ \mathbf A _{ {\alpha \beta}} $ of any finite submodel $ \mathbf A _ \alpha $ of the $ \Omega $- system $ \mathbf A $ there exists in the class $ \mathfrak K $ an $ \Omega $- system $ \mathbf B $( depending on the chosen finite depletion $ \mathbf A _{ {\alpha \beta}} $) such that the model $ \mathbf A _{ {\alpha \beta}} = \langle A _ \alpha ,\ \Omega _ \beta^{*} \rangle $ is isomorphic to the model $ \mathbf B _{ {\alpha \beta}} = \langle B _ \alpha ,\ \Omega _ \beta^{*} \rangle $ for a suitable subset $ B _ \alpha \subseteq B $.

A subclass $ \mathfrak L $ of a class $ \mathfrak K $ of $ \Omega $- systems is called universal (or universally axiomatizable) in $ \mathfrak K $ if there exists a set $ S $ of universal formulas of the signature $ \Omega $ such that $ \mathfrak L = KS \cap \mathfrak K $.

The Tarski–Los theorem: A subclass $ \mathfrak L $ of a class $ \mathfrak K $ of $ \Omega $- systems is universal in $ \mathfrak K $ if and only if $ \mathfrak L $ contains all systems from $ \mathfrak K $ which are locally imbeddable in $ \mathfrak L $.

Filtered products.

Let $ \mathbf D = \prod \mathbf A _ \alpha $ be the Cartesian product of the $ \Omega $- systems $ \mathbf A _ \alpha $( $ \alpha \in \Lambda $, $ \Lambda \neq \emptyset $) and let $ \Phi $ be some filter over $ \Lambda $. The relation

$$ d \equiv {} _ \Phi h \ \iff \ \{ {\alpha \in \Lambda} : {d ( \alpha ) = h ( \alpha )} \} \in \Phi \ \ ( d ,\ h \in D ) $$

is an equivalence relation on the underlying set $ D $ of the $ \Omega $- system $ \mathbf D $. For each element $ d \in D $, let $ d / \Phi $ be the coset by this equivalence and let $ D / \Phi = \{ {d / \Phi} : {d \in D} \} $. Putting

$$ F _{i} ( d _{1} / \Phi \dots d _{ {n _ i}} / \Phi ) \ = \ d \Phi\ \iff $$

$$ \iff \ \{ \alpha : \ F _{i} ( d _{1} ( \alpha ) \dots d _{ {n _ i}} ( \alpha ) ) = d ( \alpha ) \} \ \in \ \Phi \ \ ( F _{i} \in \Omega _{f} ) , $$

$$ P _{j} ( d _{1} / \Phi \dots d _{ {m _ j}} / \Phi )\ \iff $$

$$ \iff \ \{ \alpha : \ P _{j} ( d _{1} ( \alpha ) \dots d _{ {m _ j}} ( \alpha ) ) \} \ \in \ \Phi \ \ ( P _{j} \in \Omega _{p} ) , $$

one obtains the $ \Omega $- system $ \mathbf D / \Phi = \langle D / \Phi ,\ \Omega \rangle $, which is called the product of the $ \Omega $- systems $ \mathbf A _ \alpha $( $ \alpha \in \Lambda $) filtered through the filter $ \Phi $. The $ \Omega $- systems $ \mathbf A _ \alpha $( $ \alpha \in \Lambda $) are said to be the factors of this product. If $ \Phi $ is an ultrafilter over $ \Lambda $, the filtered product $ \mathbf D / \Phi $ is known as the ultraproduct of the $ \Omega $- systems $ \mathbf A _ \alpha $( $ \alpha \in \Lambda $).

The ultraproduct theorem: If $ \mathbf D / \Phi $ is the ultraproduct of the $ \Omega $- systems $ \mathbf A _ \alpha $( $ \alpha \in \Lambda $) and if $ \mathfrak F ( x _{1} \dots x _{k} ) $ is an arbitrary formula of the signature $ \Omega $ in which $ x _{1} \dots x _{k} $ are free object variables, then for any elements $ d _{1} \dots d _{k} \in D $:

$$ \mathfrak F ( d _{1} / \Phi \dots d _{k} / \Phi ) \ = \ T\ \iff $$

$$ \iff \ \{ \alpha : \ \mathfrak F ( d _{1} ( \alpha ) \dots d _{k} ( \alpha ) ) = T \} \ \in \ \Phi . $$

In particular, a closed formula $ \mathfrak F $ of the signature $ \Omega $ is true in the ultraproduct $ \mathbf D / \Phi $ of the $ \Omega $- systems $ \mathbf A _ \alpha $( $ \alpha \in \Lambda $) if and only if the set of numbers of factors in which the formula $ \mathfrak F $ is true belongs to the ultrafilter $ \Phi $. Therefore, any axiomatizable class of $ \Omega $- systems is closed with respect to ultraproducts.

A class $ L $ of $ \Omega $- systems is universally axiomatizable if and only if it is closed with respect to subsystems and ultraproducts.

An $ \Omega $- system $ \mathbf E = \langle \{ e \} ,\ \Omega \rangle $ is said to be a unit if its underlying set consists of a single element, e.g. an element $ e $, and if $ P _{j} ( e \dots e ) = T $ for all $ P _{j} \in \Omega _{p} $.

Mal'tsev's theorem: A class $ \mathfrak K $ of $ \Omega $- systems is a quasi-variety if and only if it contains a unit $ \Omega $- system and is closed with respect to subsystems and filtered products (through an arbitrary filter).

Completeness and categoricity.

A non-empty class $ \mathfrak K $ of $ \Omega $- systems is called categorical if all $ \Omega $- systems from $ \mathfrak K $ are mutually isomorphic. Any categorical axiomatizable class of $ \Omega $- systems consists of one (up to an isomorphism) finite $ \Omega $- system.

A class $ \mathfrak K $ of $ \Omega $- systems is called categorical in cardinality $ \mathfrak m $ if it contains an $ \Omega $- system of cardinality $ \mathfrak m $ and if all $ \Omega $- systems from $ \mathfrak K $ of cardinality $ \mathfrak m $ are mutually isomorphic. For example, the class of algebraically closed fields of fixed characteristic is categorical in any uncountable infinite cardinality. A non-empty class $ \mathfrak K $ of $ \Omega $- systems is called complete if for any $ \Omega $- systems $ \mathbf A ,\ \mathbf B $ from $ \mathfrak K $ the equality $ \mathop{\rm Th}\nolimits \ \mathbf A = \mathop{\rm Th}\nolimits \ \mathbf B $ is valid.

Vaught's theorem. If an axiomatizable class $ \mathfrak K $ of $ \Omega $- systems is categorical in some cardinality $ \mathfrak m \geq | \Omega _{f} \cup \Omega _{p} | $ and if all $ \Omega $- systems in $ \mathfrak K $ are infinite, then $ \mathfrak K $ is a complete class.

In particular, the class of all algebraically closed fields of fixed characteristic is complete.

See also Algebraic system, automorphism of an; Algebraic systems, quasi-variety of; Algebraic systems, class of; Algebraic systems, variety of.

References

[1] A.I. Mal'tsev, "Algebraic systems" , Springer (1973) (Translated from Russian)
[2] P.M. Cohn, "Universal algebra" , Reidel (1981)
[3] G. Grätzer, "Universal algebra" , Springer (1979)
[4] J.L. Bell, A.B. Slomson, "Models and ultraproducts: an introduction" , North-Holland (1971)
[5] C.C. Chang, H.J. Keisler, "Model theory" , North-Holland (1973)

Comments

The terminology in use for this subject in English-speaking countries differs in a number of respects from the Russian terminology. What is here called an algebraic system is usually called a (first-order) structure (a structure of type $ \Omega $, if a given signature or similarity type $ \Omega $ has been specified); the term algebra is often used instead of "structure" in the case when $ \Omega $ has no primitive relations. The term model is reserved for a structure which satisfies a given set of first-order sentences (closed formulas); it is not normally used in the sense defined above. The underlying set of a structure is sometimes called its universe.

Although the text is correct in saying that the subject was largely developed in the 1950s (principally through work of L.A. Henkin [L.A. Khenkin], A.I. Mal'tsev, A. Robinson and A. Tarski), two important precursors dating from 1935 should be mentioned. They are Birkhoff's theorem characterizing varieties of algebras [a1] and Tarski's definition of validity of formulas in a first-order structure [a2].

References

[a1] G. Birkhoff, "On the structure of abstract algebras" Proc. Cambridge Philos. Soc. , 31 (1935) pp. 433–454
[a2] A. Tarski, "Der Wahrheitsbegriff in den formalisierten Sprachen" Studia Philos. , 1 (1935) pp. 261–405
How to Cite This Entry:
Algebraic system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Algebraic_system&oldid=44373
This article was adapted from an original article by D.M. Smirnov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article